Role of LCAT activity changes in atherosclerosis risk
DOI:
https://doi.org/10.24959/ubphj.16.32Keywords:
LCAT, atherosclerosis, lipoproteinsAbstract
Lecithin cholesterol acyltransferase (LCAT) is a key enzyme that catalyzes the esterification of free cholesterol in plasma lipoproteins and plays a critical role in high density lipoprotein (HDL) metabolism. LCAT deficiency leads to accumulation of nascent pre-HDL due to impaired maturation of HDL particles, whereas enhanced expression is associated with the formation of large, apoE-rich HDL 1 particles. In addition to its function in HDL metabolism, LCAT was believed to be an important driving force behind macrophage reverse cholesterol transport (RCT) and, therefore, has been a subject of great interest in cardiovascular research since its discovery in 1962. Although half a century has passed, the importance of LCAT for atheroprotection is still under intense debate.
References
Lecithin cholesterol acyltransferase/ Jonas A. // Biochim. Biophys. Acta-2000.V. 1529, P. 245 – 256 .
Lecithin:cholesterol acyltransferase. Functional regions and a structural model of the enzyme / Yang C. Y., D. Manoogian Q. Pao, F. S. Lee, et al .// J. Biol. Chem.- 1987. V. 262, P. 3086 – 3091 .
Tissue-specific expression, developmental regulation, and chromosomal mapping of the lecithin: cholesterol acyltransferase gene. Evidence for expression in brain and testes as well as liver. / Warden C. H., C. A. Langner , Taylor J. W., et al .// J. Biol. Chem.-1989. V. 264, P. 21573 – 21581 .
LCAT synthesized by primary astrocytes esterifies cholesterol on glia-derived lipoproteins/ Hirsch-Reinshagen V., J. Donkin, S. Stukas, et al .// J. Lipid Res.-2009. V. 50, P. 885 – 893 .
Population-based reference values for lecithin-cholesterol acyltransferase (LCAT)/ Albers J. J., R. O. Bergelin, J. L., Adolphson et al .// Atherosclerosis .-1982. V. 43, P. 369 – 379 .
Effect of recombinant human lecithin cholesterol acyltransferase infusion on lipoprotein metabolism in mice/ Rousset X., B. Vaisman , R. Homan, et al .// J. Pharmacol. Exp. Ther.-2010. V. 335, P. 140 – 148 .
Familial lecithin cholesterol acyltransferase deficiency. Studies on lipid composition and morphology of tissues/ Stokke K. T., K. S. Bjerve, J. P. Blomhoff, et al .// Scand. J. Clin. Lab. Invest. Suppl.-1974. V. 137, P. 93 – 100.
Molecular physiolology of reverse cholesterol transport/ Fielding C. J., P. E. Fielding .// J. Lipid Res.-1995. V. 36, P. 211 – 228.
The carboxyl-terminal hydrophobic residues of apolipoprotein A-I affect its rate of phospholipid binding and its association with high density lipoprotein/ Laccotripe M., S. C. Makrides, A. Jonas, et al .// J. Biol. Chem.-1997. V. 272, P. 17511 – 17522.
Effect of the surface lipid composition of reconstituted LPA-I on apolipoprotein A-I and lecithin:cholesterol acyltransferase activity/ Sparks D. L., P. G. Frank, T. A. Nevill .// Biochim. Biophys. Acta .-1998. V. 1390, P. 160 – 172.
Advances in understanding of the role of lecithin cholesterol acyltransferase (LCAT) in cholesterol transport/ Dobiásová M., J. J. Frohlich .// Clin. Chim. Acta .-1999. V. 286, P. 257 – 271.
Human plasma lecithincholesterol acyltransferase. An elucidation of the catalytic mechanism/ Jauhiainen M., P. J. Dolphin .// J. Biol. Chem.-1986. V. 261, P. 7032 – 7043.
Lecithin-cholesterol acyltransferase in the metabolism of high-density lipoproteins/ Jonas A.// Biochim. Biophys. Acta .1991. V. 1084, P. 205 – 220.
Reverse cholesterol transport and cholesterol effl ux in atherosclerosis/ Ohashi R., X. Wang , Q. Yao, et al .// QJM .-2005. V. 98, P. 845 – 856.
. Scavenger receptor BI and ATP-binding cassette transporter A1 in reverse cholesterol transport and atherosclerosis/ Van Eck M., M. Pennings, M. Hoekstra, et al .// Curr. Opin. Lipidol.-2005. V. 16, P. 307 – 315.
Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages/ Jessup W., I. C. Gelissen, K. Gaus, et al .// Curr. Opin. Lipidol.2006. V.
, P. 247 – 257 . 17. Functional LCAT deficiency in human apolipoprotein A-I transgenic, SR-BI knockout mice/ Lee J. Y., R. M. Badeau, A. Mulya, et al .// J. Lipid Res.-2007. V. 48, P. 1052 – 1061.
. Induction of the phospholipid transfer protein gene accounts for the high density lipoprotein enlargement in mice treated with fenofi brate/ Bouly M., X. C. Jiang, C. Fievet, et al .// J. Biol. Chem.-2001. V. 276, P. 25841 – 25847.
Accumulation of apolipoprotein E-rich high density lipoproteins in hyperalphalipoproteinemic human subjects with plasma cholesteryl ester transfer protein defi ciency/ Yamashita S., D. L. Sprecher, N. Sakai, et al .// J. Clin. Invest.-1990. V. 86, P. 688 – 695 .
Cholesteryl ester transfer protein activity enhances plasma cholesteryl ester formation. Studies in CETP transgenic mice and human genetic CETP deficiency/ Oliveira H. C., R. Milne, S. M. Marcovina, et al .// Arterioscler. Thromb. Vasc. Biol. -1997. V. 17, P. 1045 – 1052 .
Binding affinity and reactivity of lecithin cholesterol acyltransferase with native lipoproteins/ Kosek A. B., D. Durbin, A. Jonas.// Biochem. Biophys. Res. Commun.-1999. V. 258, P. 548 – 551 .
Functional LCAT deficiency in human apolipoprotein A-I transgenic, SR-BI knockout mice/ Lee J. Y., R. M. Badeau, A. Mulya, et al .// J. Lipid Res.-2007. V. 48, P. 1052 – 1061 .
Sphingomyelin inhibits the lecithincholesterol acyltransferase reaction with reconstituted high density lipoproteins by decreasing enzyme binding/ Bolin D. J., A. Jonas .// J. Biol. Chem.-1996. V. 271, P. 19152 – 19158 .
The plasma lecithin cholesterol acyltransferase reaction/ Glomset J. A.// J. Lipid Res.-1968. V. 9, P. 155 – 167 .
Erythrocyte metabolism. IV. Equilibration of cholesterol-4-C-14 between erythrocytes and variously treated sera/ Murphy J. R// J. Lab. Clin. Med.-1962. V. 60, P.: 571 – 578 .
Regulation of cellular cholesterol efflux by lecithin cholesterol acyltransferase reaction through nonspecific lipid exchange/ Czarnecka H., S. Yokoyama.// J. Biol. Chem.-1996. V. 271, P. 2023 – 2028 .
Fractional efflux and net change in cellular cholesterol content mediated by sera from mice expressing both human apolipoprotein AI and human lecithin:cholesterol acyltransferase genes/ Fournier N., V. Atger, J. P. Paul, et al .// Atherosclerosis .-1999. V. 147, P. 227 – 235 .
Overexpression of lecithin: cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis/ Hoeg J. M., S. Santamarina-Fojo, A. M. Bérard, et al .// Proc. Natl. Acad. Sci. USA .-1996. V. 93, P. 11448 – 11453 .
Overexpression of human lecithin cholesterol acyltransferase in cholesterol-fed rabbits: LDL metabolism and HDL metabolism are affected in a gene dose-dependent manner/ Brousseau M. E., B. L. Vaisman, A. M. Bérard , et al .// J. Lipid Res.-1997. V. 38, P. 2537 – 2547 .
Correction of hypoalphalipoproteinemia in LDL receptordeficient rabbits by lecithin cholesterol acyltransferase/ Brousseau M. E., J. Wang, S. J. Demosky, et al .// J. Lipid Res.-1998. V. 39, P. 1558 – 1567 .
LCAT modulates atherogenic plasma lipoproteins and the extent of atherosclerosis only in the presence of normal LDL receptors in transgenic rabbits/ Brousseau M. E., R. D. Kauffman, E. E. Herderick, et al .// Arterioscler. Thromb. Vasc. Biol.-2000. V. 20, P. 450 – 458 .
Adenoviral expression of human lecithincholesterol acyltransferase in nonhuman primates leads to an antiatherogenic lipoprotein phenotype by increasing high-density lipoprotein and lowering low-density lipoprotein/ Amar M. J., R. D. Shamburek, B. Vaisman , et al .// Metabolism .- 2009. V. 58, P. 568 – 575 .
Apolipoprotein A-I and lecithin cholesterol acyltransferase transfer induce cholesterol unloading in complex atherosclerotic lesions/ Van Craeyveld E., J. Lievens, F. Jacobs , et al .// Gene Ther.-2009. V. 16, P. 757 – 765 .
Lecithin cholesterol acyltransferase promotes reverse cholesterol transport and attenuates atherosclerosis progression in New Zealand White Rabbits / Zhou M., J. Sawyer, K. Kelley, et al .// (Abstract 5920) Circulation .-2009. V. 120, P. S1175 .
Alphacore Pharma LLC. 2012 . Effect of ACP-501 on safety, tolerability, pharmacokinetics and pharmacodynamics in subjects with coronary artery disease. ClinicalTrials.gov Identifier: NCT01554800. Available at: http://clinicaltrials.gov/ct2/show/ NCT01554800 . Accessed April 20, 2012.
Overexpression of lecithin cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis/ Berard A.M., Cornhill J.F., Herderick E.E., et al .// Proc. Natl. Acad. Sci. U S A-1996. V. 93, P. 11448-53.
Increased plasma HDL cholesterol levels and biliary cholesterol excretion in hamster by LCAT overexpression/ Zhang A.H., Gao S., Fan J.L., et al .// FEBS Lett. -2004. V. 570, P. 25-29.
Specificity of lecithin cholesterol acyltransferase and atherogenic risk: comparative studies on the plasma composition and in vitro synthesis of cholesteryl esters in 14 vertebrate species/ Liu M., Bagdade J.D., Subbaiah P.V.// J. Lipid. Res. -1995. V. 36, P. 1813-1824.
High plasma HDL concentrations associated with enhanced atherosclerosis in transgenic mice overexpressing lecithin-cholesteryl acyltransferase/ Berard A.M., Foger B., Remaley A., et al .// Nat. Med. – 1997. V. 3, P. 744-749.
Cholesteryl ester transfer protein corrects dysfunctional high density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice/ Foger B., Chase M., Amar M.J., et al .// J. Biol. Chem. – 1999. V. 274, P. 36912-36920.
High-density lipoproteins, cholesterol transport and coronary heart disease/ Havel R.J.// Circulation – 1979. V. 60, P. 1-3.
High density lipoprotein as a protective factor against coronary heart disease/ Gordon T., Castelli W.P., Hjortland M.C., et al .// The Framingham Study. Am. J. Med. – 1977. V. 62, P. 707-714.
Reference intervals for plasma apolipoprotein A-1 determined with a standardized commercial immunoturbidimetric assay: results from the Framingham Offspring Study/ Contois J., McNamara J.R., Lammi-Keefe C., et al .// Clin. Chem. – 1996. V. 42, P. 507-514.
Downloads
Published
Issue
Section
License
Copyright (c) 2016 National University of Pharmacy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).