Role of LCAT activity changes in atherosclerosis risk

Authors

  • D. A. Dorovsky National University of Pharmacy, Ukraine
  • A. L. Zagayko National University of Pharmacy, Ukraine

DOI:

https://doi.org/10.24959/ubphj.16.32

Keywords:

LCAT, atherosclerosis, lipoproteins

Abstract

Lecithin cholesterol acyltransferase (LCAT) is a key enzyme that catalyzes the esterification of free cholesterol in plasma lipoproteins and plays a critical role in high density lipoprotein (HDL) metabolism. LCAT deficiency  leads to accumulation of nascent pre-HDL due to impaired maturation of HDL particles, whereas enhanced expression is associated with the formation of   large, apoE-rich HDL 1 particles. In addition to its function in HDL metabolism, LCAT was believed to be an important driving force behind macrophage reverse cholesterol transport (RCT) and, therefore, has been a subject of great interest in cardiovascular research since its discovery in 1962. Although half a century has passed, the importance of LCAT for atheroprotection is still under intense debate.

References

Lecithin cholesterol acyltransferase/ Jonas A. // Biochim. Biophys. Acta-2000.V. 1529, P. 245 – 256 .

Lecithin:cholesterol acyltransferase. Functional regions and a structural model of the enzyme / Yang C. Y., D. Manoogian Q. Pao, F. S. Lee, et al .// J. Biol. Chem.- 1987. V. 262, P. 3086 – 3091 .

Tissue-specific expression, developmental regulation, and chromosomal mapping of the lecithin: cholesterol acyltransferase gene. Evidence for expression in brain and testes as well as liver. / Warden C. H., C. A. Langner , Taylor J. W., et al .// J. Biol. Chem.-1989. V. 264, P. 21573 – 21581 .

LCAT synthesized by primary astrocytes esterifies cholesterol on glia-derived lipoproteins/ Hirsch-Reinshagen V., J. Donkin, S. Stukas, et al .// J. Lipid Res.-2009. V. 50, P. 885 – 893 .

Population-based reference values for lecithin-cholesterol acyltransferase (LCAT)/ Albers J. J., R. O. Bergelin, J. L., Adolphson et al .// Atherosclerosis .-1982. V. 43, P. 369 – 379 .

Effect of recombinant human lecithin cholesterol acyltransferase infusion on lipoprotein metabolism in mice/ Rousset X., B. Vaisman , R. Homan, et al .// J. Pharmacol. Exp. Ther.-2010. V. 335, P. 140 – 148 .

Familial lecithin cholesterol acyltransferase deficiency. Studies on lipid composition and morphology of tissues/ Stokke K. T., K. S. Bjerve, J. P. Blomhoff, et al .// Scand. J. Clin. Lab. Invest. Suppl.-1974. V. 137, P. 93 – 100.

Molecular physiolology of reverse cholesterol transport/ Fielding C. J., P. E. Fielding .// J. Lipid Res.-1995. V. 36, P. 211 – 228.

The carboxyl-terminal hydrophobic residues of apolipoprotein A-I affect its rate of phospholipid binding and its association with high density lipoprotein/ Laccotripe M., S. C. Makrides, A. Jonas, et al .// J. Biol. Chem.-1997. V. 272, P. 17511 – 17522.

Effect of the surface lipid composition of reconstituted LPA-I on apolipoprotein A-I and lecithin:cholesterol acyltransferase activity/ Sparks D. L., P. G. Frank, T. A. Nevill .// Biochim. Biophys. Acta .-1998. V. 1390, P. 160 – 172.

Advances in understanding of the role of lecithin cholesterol acyltransferase (LCAT) in cholesterol transport/ Dobiásová M., J. J. Frohlich .// Clin. Chim. Acta .-1999. V. 286, P. 257 – 271.

Human plasma lecithincholesterol acyltransferase. An elucidation of the catalytic mechanism/ Jauhiainen M., P. J. Dolphin .// J. Biol. Chem.-1986. V. 261, P. 7032 – 7043.

Lecithin-cholesterol acyltransferase in the metabolism of high-density lipoproteins/ Jonas A.// Biochim. Biophys. Acta .1991. V. 1084, P. 205 – 220.

Reverse cholesterol transport and cholesterol effl ux in atherosclerosis/ Ohashi R., X. Wang , Q. Yao, et al .// QJM .-2005. V. 98, P. 845 – 856.

. Scavenger receptor BI and ATP-binding cassette transporter A1 in reverse cholesterol transport and atherosclerosis/ Van Eck M., M. Pennings, M. Hoekstra, et al .// Curr. Opin. Lipidol.-2005. V. 16, P. 307 – 315.

Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages/ Jessup W., I. C. Gelissen, K. Gaus, et al .// Curr. Opin. Lipidol.2006. V.

, P. 247 – 257 . 17. Functional LCAT deficiency in human apolipoprotein A-I transgenic, SR-BI knockout mice/ Lee J. Y., R. M. Badeau, A. Mulya, et al .// J. Lipid Res.-2007. V. 48, P. 1052 – 1061.

. Induction of the phospholipid transfer protein gene accounts for the high density lipoprotein enlargement in mice treated with fenofi brate/ Bouly M., X. C. Jiang, C. Fievet, et al .// J. Biol. Chem.-2001. V. 276, P. 25841 – 25847.

Accumulation of apolipoprotein E-rich high density lipoproteins in hyperalphalipoproteinemic human subjects with plasma cholesteryl ester transfer protein defi ciency/ Yamashita S., D. L. Sprecher, N. Sakai, et al .// J. Clin. Invest.-1990. V. 86, P. 688 – 695 .

Cholesteryl ester transfer protein activity enhances plasma cholesteryl ester formation. Studies in CETP transgenic mice and human genetic CETP deficiency/ Oliveira H. C., R. Milne, S. M. Marcovina, et al .// Arterioscler. Thromb. Vasc. Biol. -1997. V. 17, P. 1045 – 1052 .

Binding affinity and reactivity of lecithin cholesterol acyltransferase with native lipoproteins/ Kosek A. B., D. Durbin, A. Jonas.// Biochem. Biophys. Res. Commun.-1999. V. 258, P. 548 – 551 .

Functional LCAT deficiency in human apolipoprotein A-I transgenic, SR-BI knockout mice/ Lee J. Y., R. M. Badeau, A. Mulya, et al .// J. Lipid Res.-2007. V. 48, P. 1052 – 1061 .

Sphingomyelin inhibits the lecithincholesterol acyltransferase reaction with reconstituted high density lipoproteins by decreasing enzyme binding/ Bolin D. J., A. Jonas .// J. Biol. Chem.-1996. V. 271, P. 19152 – 19158 .

The plasma lecithin cholesterol acyltransferase reaction/ Glomset J. A.// J. Lipid Res.-1968. V. 9, P. 155 – 167 .

Erythrocyte metabolism. IV. Equilibration of cholesterol-4-C-14 between erythrocytes and variously treated sera/ Murphy J. R// J. Lab. Clin. Med.-1962. V. 60, P.: 571 – 578 .

Regulation of cellular cholesterol efflux by lecithin cholesterol acyltransferase reaction through nonspecific lipid exchange/ Czarnecka H., S. Yokoyama.// J. Biol. Chem.-1996. V. 271, P. 2023 – 2028 .

Fractional efflux and net change in cellular cholesterol content mediated by sera from mice expressing both human apolipoprotein AI and human lecithin:cholesterol acyltransferase genes/ Fournier N., V. Atger, J. P. Paul, et al .// Atherosclerosis .-1999. V. 147, P. 227 – 235 .

Overexpression of lecithin: cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis/ Hoeg J. M., S. Santamarina-Fojo, A. M. Bérard, et al .// Proc. Natl. Acad. Sci. USA .-1996. V. 93, P. 11448 – 11453 .

Overexpression of human lecithin cholesterol acyltransferase in cholesterol-fed rabbits: LDL metabolism and HDL metabolism are affected in a gene dose-dependent manner/ Brousseau M. E., B. L. Vaisman, A. M. Bérard , et al .// J. Lipid Res.-1997. V. 38, P. 2537 – 2547 .

Correction of hypoalphalipoproteinemia in LDL receptordeficient rabbits by lecithin cholesterol acyltransferase/ Brousseau M. E., J. Wang, S. J. Demosky, et al .// J. Lipid Res.-1998. V. 39, P. 1558 – 1567 .

LCAT modulates atherogenic plasma lipoproteins and the extent of atherosclerosis only in the presence of normal LDL receptors in transgenic rabbits/ Brousseau M. E., R. D. Kauffman, E. E. Herderick, et al .// Arterioscler. Thromb. Vasc. Biol.-2000. V. 20, P. 450 – 458 .

Adenoviral expression of human lecithincholesterol acyltransferase in nonhuman primates leads to an antiatherogenic lipoprotein phenotype by increasing high-density lipoprotein and lowering low-density lipoprotein/ Amar M. J., R. D. Shamburek, B. Vaisman , et al .// Metabolism .- 2009. V. 58, P. 568 – 575 .

Apolipoprotein A-I and lecithin cholesterol acyltransferase transfer induce cholesterol unloading in complex atherosclerotic lesions/ Van Craeyveld E., J. Lievens, F. Jacobs , et al .// Gene Ther.-2009. V. 16, P. 757 – 765 .

Lecithin cholesterol acyltransferase promotes reverse cholesterol transport and attenuates atherosclerosis progression in New Zealand White Rabbits / Zhou M., J. Sawyer, K. Kelley, et al .// (Abstract 5920) Circulation .-2009. V. 120, P. S1175 .

Alphacore Pharma LLC. 2012 . Effect of ACP-501 on safety, tolerability, pharmacokinetics and pharmacodynamics in subjects with coronary artery disease. ClinicalTrials.gov Identifier: NCT01554800. Available at: http://clinicaltrials.gov/ct2/show/ NCT01554800 . Accessed April 20, 2012.

Overexpression of lecithin cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis/ Berard A.M., Cornhill J.F., Herderick E.E., et al .// Proc. Natl. Acad. Sci. U S A-1996. V. 93, P. 11448-53.

Increased plasma HDL cholesterol levels and biliary cholesterol excretion in hamster by LCAT overexpression/ Zhang A.H., Gao S., Fan J.L., et al .// FEBS Lett. -2004. V. 570, P. 25-29.

Specificity of lecithin cholesterol acyltransferase and atherogenic risk: comparative studies on the plasma composition and in vitro synthesis of cholesteryl esters in 14 vertebrate species/ Liu M., Bagdade J.D., Subbaiah P.V.// J. Lipid. Res. -1995. V. 36, P. 1813-1824.

High plasma HDL concentrations associated with enhanced atherosclerosis in transgenic mice overexpressing lecithin-cholesteryl acyltransferase/ Berard A.M., Foger B., Remaley A., et al .// Nat. Med. – 1997. V. 3, P. 744-749.

Cholesteryl ester transfer protein corrects dysfunctional high density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice/ Foger B., Chase M., Amar M.J., et al .// J. Biol. Chem. – 1999. V. 274, P. 36912-36920.

High-density lipoproteins, cholesterol transport and coronary heart disease/ Havel R.J.// Circulation – 1979. V. 60, P. 1-3.

High density lipoprotein as a protective factor against coronary heart disease/ Gordon T., Castelli W.P., Hjortland M.C., et al .// The Framingham Study. Am. J. Med. – 1977. V. 62, P. 707-714.

Reference intervals for plasma apolipoprotein A-1 determined with a standardized commercial immunoturbidimetric assay: results from the Framingham Offspring Study/ Contois J., McNamara J.R., Lammi-Keefe C., et al .// Clin. Chem. – 1996. V. 42, P. 507-514.

Downloads

Published

2016-06-13

Issue

Section

Review articles