Mechanisms of metformin influence on the nitrogen oxide system investigation at experimental insulin resistance in rats

A. L. Zagayko, T. O. Briukhanova

Abstract


Topicality. Cardiovascular complications are among the leading causes of death in the world. It is known that diseases associated with insulin resistance, are often accompanied by endothelial dysfunction and cardiovascular continuum.
Aim. It is reasonable to investigate metformin mechanisms effect on the functional state of endothelium at experimental insulin resistance.
Materials and methods. The syndrome of insulin resistance was designed on Wistar rats – males by mass of a 180-220 g and age 3 months in the beginning of experiment, by daily long period intraperitoneal Dexamethazonum injections in low doses (15 mg/kg) in low-calorie diet conditions (29 % fats – predominantly saturated lipids ), rich in fructose (1 g per day per 100 g of body weight) (water solution ) over 5 weeks.
Results and discussion. The results indicate that in a model pathology group on 5 week of experiment, metformin significantly increases the total content of nitrates and nitrites and mediates a moderate, but significant increase in levels
of citrulline, with a slight decrease in the arginine content.
Conclusions. The article presents the biochemical results mechanisms of influence on the nitrogen oxide system by the oral hypoglycemic agent metformin experimental investigation at experimental insulin resistance in rats. This pattern of changes suggests a clinically significant influence of metformin on endothelium functional state that can be interpreted as a manifestation of endothelium protection properties.


Keywords


insulin resistance; metformin; endothelium; nitric oxide

References


Guo, S. Insulin signaling, resistance, and metabolic syndrome: insights from mouse models into disease mechanisms / S. Guo // J. of Endocrinol. –

– Vol. 220, Issue 2. – С. Т1–Т23. doi : 10.1530/joe–13–0327.

Eringa, E. Endothelial dysfunction in (pre) diabetes: characteristics, causative mechanisms and pathogenic role in type 2 diabetes / E. Eringa,

E. Serne, R. Meijer // Rev. in Endocrine and Metabolic Disorders. – 2013. – Vol. 14, Issue 1. – С. 39–48. doi : 10.1007/s11154–013–9239–7.

Jia, G. Endothelial dysfunction potentially interacts with impaired glucose metabolism to increase cardiovascular risk / G. Jia, J. Sowers // Hypertension.

– 2014. – Vol. 64, Issue 4. – С. 1192–1193. doi : 10.1161/hypertensionaha.114.04348.

Endothelial dysfunction in metabolic syndrome: prevalence, pathogenesis and management / K. Tziomalos, V. Athyros, A. Karagiannis, D. Mikhailidis

// Nutrition, Metabolism and Cardiovascular Dis. – 2010. – Vol. 20, Issue 2. – С. 140–146. doi : 10.1016/j.numecd.2009.08.006.

Metformin: from mechanisms of action to therapies / M. Foretz, G. Bruno, B. Luc et al. // Cell Metabolism. – 2014. – Vol. 20, Issue 6. – С. 953–966.

doi : 10.1016/j.cmet.2014.09.018.

Role of AMP–activated protein kinase in mechanism of metformin action / G. Zhou, M. Robert, L. Ying et al. // The J. of Clin. Investigation. – 2001. –

Vol. 108, Issue 8. – С. 1167–1174. doi : 10.1172/jci200113505.

Rena, G. Molecular mechanism of action of metformin: old or new insights? / G. Rena, R. Ewan, S. Kei // Diabetologia. – 2013. – Vol. 56, Issue 9. –

С. 1989–1906. doi : 10.1007/s00125–013–2991–0.

The antidiabetic drug metformin activates the AMP–activated protein kinase cascade via an adenine nucleotide–independent mechanism / S. Hawley,

E. Anne, S. Grith, H. Grahame // Diabetes. – 2002. – Vol. 51, Issue 8. – С. 2420–2425. doi : 10.2337/diabetes.51.8.2420.

Cellular and molecular mechanisms of metformin: an overview / B. Viollet, G. Bruno, S. Nieves et al. // Clin. Sci. – 2012. – Vol. 122, Issue 6. –

С. 253–270. doi : 10.1042/cs20110386.

Загайко, А. Л. Модифікація методу моделювання експериментальної інсулінорезистентності у щурів : інформ. лист Міністерства охоро-

ни здоров’я України / А. Л. Загайко, T. O. Брюханова, А. І. Шкапо // Український центр наукової медичної інформації та патентно–ліцензійної роботи (Укрмедпатентінформ). – K., 2015. – № 86. – 7 с.

Matthews, D. Homeostasis model assessment: insulin resistance and b–cell function from fasting plasma glucose and insulin concentrations in

man / D. Matthews, J. Hosker, A. Rudenski // Diabetol. – 1985. – Vol. 28, Issue 7. – С. 412–419. doi : 10.1007/bf00280883.

Колб, В. Справочник по клинической химии / В. Колб, В. Камышников. – Мн : Беларусь, 1982. – 366 c.

Лифшиц, В. Биохимические анализы в клинике / В. Лифшиц, В. Сидельников. – Воронеж : Дом ВГУ, 1996. – 280 c.


GOST Style Citations


1. Guo, S. (2013). Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. Journal of Endocrinology,
220 (2), T1–T23. doi: 10.1530/joe–13–0327

2. Eringa, E. C., Serne, E. H., Meijer, R. I., Schalkwijk, C. G., Houben, A. J. H. M., Stehouwer, C. D. A., van Hinsbergh, V. W. M. (2013). Endothelial dysfunction
in (pre)diabetes: Characteristics, causative mechanisms and pathogenic role in type 2 diabetes. Reviews in Endocrine and Metabolic Disorders,
14 (1), 39–48. doi: 10.1007/s11154–013–9239–7

3. Jia, G., Sowers, J. R. (2014). Endothelial Dysfunction Potentially Interacts With Impaired Glucose Metabolism to Increase Cardiovascular Risk.
Hypertension, 64 (6), 1192–1193. doi: 10.1161/hypertensionaha.114.04348

4. Tziomalos, K., Athyros, V. G., Karagiannis, A., Mikhailidis, D. P. (2010). Endothelial dysfunction in metabolic syndrome: Prevalence, pathogenesis
and management. Nutrition, Metabolism and Cardiovascular Diseases, 20 (2), 140–146. doi: 10.1016/j.numecd.2009.08.006

5. Foretz, M., Guigas, B., Bertrand, L., Pollak, M., Viollet, B. (2014). Metformin: From Mechanisms of Action to Therapies. Cell Metabolism, 20 (6),
953–966. doi: 10.1016/j.cmet.2014.09.018

6. Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk–Melody, J., Moller, D. E. (2001). Role of AMP–activated protein kinase in mechanism of metformin
action. Journal of Clinical Investigation, 108 (8), 1167–1174. doi: 10.1172/jci200113505

7. Rena, G., Pearson, E. R., Sakamoto, K. (2013). Molecular mechanism of action of metformin: old or new insights? Diabetologia, 56 (9), 1898–1906.
doi: 10.1007/s00125–013–2991–0

8. Hawley, S. A., Gadalla, A. E., Olsen, G. S., Hardie, D. G. (2002). The Antidiabetic Drug Metformin Activates the AMP–Activated Protein Kinase Cascade
via an Adenine Nucleotide–Independent Mechanism. Diabetes, 51 (8), 2420–2425. doi: 10.2337/diabetes.51.8.2420

9. Viollet, B., Guigas, B., Garcia, N. S., Leclerc, J., Foretz, M., Andreelli, F. (2012). Cellular and molecular mechanisms of metformin: an overview. Clinical
Science, 122 (6), 253–270. doi: 10.1042/cs20110386

10. Zahaiko, A. L., Briukhanova, T. O., Shkapo, A. I. (2015). Ukrainskyi tsentr naukovoi medychnoi informatsii ta patentno–litsenziinoi roboty (Ukrmedpatentinform),
86. Kyiv, 7.

11. Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., Turner, R. C. (1985). Homeostasis model assessment: insulin resistance
and b–cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28 (7), 412–419. doi: 10.1007/bf00280883

12. Kolb, V., Kamyshnikov, V. (1982). Spravochnik po klinicheskoi pharmatcii. Minsk, Belarus, 366.

13. Lifshitc, V., Sidelnikov, V. (1996). Biokhimicheskie analizy v klinike. Voronezh: Dom VGU, 280.





DOI: https://doi.org/10.24959/ubphj.17.103

Abbreviated key title: Ukr. bìofarm. ž.

ISSN 2519-8750 (Online), ISSN 2311-715X (Print)