Pathogenetic aspects of hypolipidemic drugs antimicrobial potential in metabolic syndrome therapy: a theoretical study


  • M. M. Velikaya National University of Pharmacy, Ukraine
  • N. Yu. Sheveleva National University of Pharmacy, Ukraine
  • I. Yu. Tishchenko National University of Pharmacy, Ukraine



metabolic syndrome, antimicrobial activity, dyslipidemia


Topicality. Metabolic syndrome (MS) is an extremely common medical and social problem. However, there is no modern understanding of the MS ethiopathogenetic mechanisms. Debates about MS discuss different versions of the development of this symptom complex, when each of the clusters can be primary in the pathogenesis of MS. Therefore, any metabolic processes disorders in the human body are always accompanied with and lead to a changes in quantitative and qualitative microbiocenoses composition, and vice versa, microbiota imbalance may induce the development of pathological states including MS.

Aim. To analyze the published data that concern antimicrobial potential of modern drugs with lipid-lowering properties used in complex therapy of MS.

Materials and methods. Lipid-lowering agents and their direct or indirect antimicrobial effect may cause the microbiota imbalance in the human body. While studying the data, we analyzed antimicrobial potential of modern drugs with lipid-lowering properties used in complex therapy of MS. We studied recent research in the field of microecology and the results of significant effect in normal microflora on metabolic processes.

Results and discussion. According to modern concepts, an important pathogenetic link in the obesity and MS development is the imbalance in normal intestinal microflora. At the same time, lipid-lowering agents can have a direct or indirect antimicrobial effect and, consequently, cause an imbalance of microbiota in the human body. Thereby, it is important for the therapy effectiveness to take into account the significant antimicrobial potential of drugs used in the correction of metabolic disorders.

Conclusions. The future complex antimicrobial properties study of drugs used in the correction of described pathological states has a good perspective.

Author Biographies

M. M. Velikaya, National University of Pharmacy

candidate of Pharmacy, associate professor of microbiology, virusology and immunology department, National University of Pharmacy

N. Yu. Sheveleva, National University of Pharmacy

candidate of biological sciences, associate professor of microbiology, virusology and immunology department, National University of Pharmacy

I. Yu. Tishchenko, National University of Pharmacy

candidate of biological sciences, associate professor of microbiology, virusology and immunology department, National University of Pharmacy


Cameron, A. J., Shaw, J. E., Zimmet, P. Z. (2004). The metabolic syndrome: prevalence in worldwide populations. Endocrinology and Metabolism Clinics of North America, 33 (2), 351–375. doi: 10.1016/j.ecl.2004.03.005

Wang, G. R., Li, L., Pan, Y. H. et al. (2013). Prevalence of metabolic syndrome among urban community residents in China. BMC Public Health, 13 (1), 599. doi: 10.1186/1471–2458–13–599

Van Vliet–Ostaptchouk, J. V., Nuotio, M–L., Slagter, S. N. et al. (2014). The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies. BMC endocrine disorders, 14 (1), 9. doi: 10.1186/1472–6823–14–9

Sergeev, V. V. (2009). Vrach, 2, 36–41.

Villamor, E., Finan, C. C., Ramirez–Zea, M., Roman, A. V. (2016). Prevalence and sociodemographic correlates of metabolic syndrome in school–aged children and their parents in nine Mesoamerican countries. Public Health Nutrition, 20 (2), 255–265.

Grundy, S. M. (2016). Metabolic syndrome update. Trends in cardiovascular medicine, 26 (4), 364–373.

Kaur, J. (2014) A comprehensive review on metabolic syndrome. Cardiology research and practice, 1–21. doi: 10.1155/2014/943162

Grundy, S. M., Cleeman, J. I., Daniels, S. R. et al. (2005). Diagnosis and management of the metabolic syndrome. Circulation, 112 (17), 2735–2752. doi: 10.1161/CIRCULATIONAHA.105.169404

Day, C. (2005). Diagnostic definitions—metabolic syndrome. The British Journal of Diabetes. Vascular Disease, 5 (3), 115–118. doi: 10.1177/14746514050050030101

Guo, S. (2014). Insulin signaling, resistance, and metabolic syndrome: insights from mouse models into disease mechanisms. Journal of Endocrinology, 220 (2), T1–T23. doi: 10.1530/JOE–13–0327

Roitberg, G. E., Ushakova, T. I., Dorosh, Zh. V. (2004). Kardiologiia, 3, 94–101.

Reaven, G. M. (2007). The individual components of the metabolic syndrome: is there a raison d’Еtre? J.Am.Coll. Nutr., 26, 3, 191–195. doi: 10.1080/07315724.2007.10719601

Chazova, I. E., Mychka, V. B. (2008). Metabolicheskii sindrom. Мoscow: Меdia Меdika, 319.

Ginzburg, М. М., Koriukov, N. N. (2002). Ozhirenie. Vliianie na razvitie metabolicheskogo sindroma. Profilaktika i lechenie. Мoscow: Меdpraktika, 23–25.

Ikewaki, K., Tohyama, J. (2004). Dyslipidemia in metabolic syndrome. Nihon rinsho. Japanese journal of clinical medicine, 62 (6), 1099–1103.

Devi, S. (2017). Dyslipidemia in Metabolic Syndrome: an Overview of Lipoprotein– Related Disorders. International Journal of Cardiology and Lipidology Research, 4 (1). doi: 10.15379/2410–2822.2017.04.01.02

Chibisov, S. M., Rapoport, S. I., Kolesnikov, D. B. et al. (2008). Klinicheskaia меditcina, 6, 30–35.

Grundy, S. M. (2016). Metabolic syndrome update. Trends in cardiovascular medicine, 26 (4), 364–373. doi: 10.1016/j.tcm.2015.10.004

Shenderov, B. A. (2011). Probiotics and functional foods. Food Engineering. [Eds UNESCO–EOLSS Joint Committee], in Encyclopedia of Life Support Systems (EOLSS). Oxford,UK: Developed under the Auspices of the UNESCO, EOLSS Publishers.

Topping, D. L., Clifton, P. M. (2001). Shot–chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiological reviews, 81 (3), 1031–1064.

Parfenov, А. I., Chernin, V. V., Bondarenko, V. M. et al. (2014). Russkii meditcinskii zhurnal, 22 (15), 1088–1092.

Wilson, I.D., Nicholson, J. K. (2017). Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Translational Research, 179, 204–222. doi: 10.1016/j.trsl.2016.08.002

DeGruttola, A. K., Low, D., Mizoguchi, A., Mizoguchi, E. (2016). Current understanding of dysbiosis in disease in human and animal models. Inflammatory bowel diseases, 22 (5), 1137. doi: 10.1097/MIB.0000000000000750

Velikaia, M. M., Sheveleva, N. E. (2010). Ukrainskyi biofarmatsevtychnyi zhurnal – Ukrainian biopharmaceutical journal, 4 (9), 6 – 12.

Ghose, T. (2016). Statins in Dyslipidemia: handbook of Lipidology, 105.

Тvorogova, М. G., Samoilenko, Е. Yu., Naumov, V. G. (2008). Laboratornaia meditcina, 9, 7–11.

Baranova, N. А., Kreier, V. G., Osmolovskii, А. А. et al. (2010). Immunopatologiia, allergologiia, infektologiia, 1, 240–240.

Hennessy, E., Adams, C., Reen, F.J., O’Gara, F. (2016). Is there potential for repurposing statins as novel antimicrobials? Antimicrobial Agents and Chemotherapy, 60 (9), 5111–5121. doi: 10.1128/AAC.00192–16

Dutta, N. K., Bruiners, N., Pinn, M. L. et al. (2016). Statin adjunctive therapy shortens the duration of TB treatment in mice. Journal of Antimicrobial Chemotherapy, 71 (6), 1570–1577. doi: 10.1093/jac/dkw014

Wong, R. P., Davis, T. M. (2012). In vitro antimalarial activity and drug interactions of fenofibric acid. Antimicrobial agents and chemotherapy, 56 (6), 2814–2818. doi: 10.1128/AAC.05076–11

Madhosingh, C., Orr, W. (1981). Antimicrobial effects of clofibrate on the wheat pathogen Fusarium culmorum. Journal of Environmental Science & Health Part B, 16 (5), 587–604. doi: 10.1080/03601238109372281

Out, C., Groen, A.K., Brufau, G. (2012). Bile acid sequestrants: more than simple resins. Current opinion in lipidology, 23 (1), 43–55. doi: 10.1097/MOL.0b013e32834f0ef3

Lukasova, M., Malaval, C., Gille, A. et al. (2011). Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor GPR109A expressed by immune cells. J. Clin. Invest., 121 (3), 1163–1173. doi: 10.1172/JCI41651

Kurmangulov, А. А., Dorodneva, E. F., Isakova, D. N. (2016). Ozhirenie i metabolism, 1, 16–19.

Festi, D., Schiumerini, R., Eusebi, L. H. et al. (2014). Gut microbiota and metabolic syndrome. World J Gastroenterol, 20 (43), 16079–16094. doi: 10.3748/wjg.v20.i43.16079

Zakharenko, S. M., Fominykh, Yu. A., Mekhtiev, S. N. (2011). Effektivnaia farmakoterapiia, 7, 14–22.

Sina, C., Gavrilova, O., Förster, M. et al. (2009). G protein–coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. The Journal of Immunology, 183 (11), 7514–7522. doi: 10.4049/jimmunol.0900063

Kimura, I., Inoue, D., Maeda, T., Hara, T., Ichimura, A., Miyauchi, S., Tsujimoto, G. (2011). Short–chain fatty acids and ketones directly regulate sympathetic nervous system via G protein–coupled receptor 41 (GPR41). Proceedings of the National Academy of Sciences, 108 (19), 8030–8035. doi: 10.1073/pnas.1016088108

Wostmann, B. S. (1973). Intestinal bile acids and cholesterol absorption in the germfree rat. J. Nutr., 103 (7), 982– 990.






Review articles