Effects of eplerenone on behavioral responses and indicators of carbonyl/oxidative stress in rats with experimental myocardial damage

Authors

DOI:

https://doi.org/10.24959/ubphj.18.164

Keywords:

inspra, carbonyl/oxidative stress, antioxidant system, experimental myocardial damage

Abstract

Topicality. The degree of ischemic myocardial damage largely depends on the activity of antioxidant protection, therefore antioxidant agents are used for treatment. In cardiology, aldosterone antagonists are used, as an adjunct to standard therapy to reduce the risk of adverse cardiovascular events, among which special popularity is gained by inspra. Data on the antioxidant properties of this drug are single and very contradictory.
Aim. To study the effect of inspra on indicators of carbonyl/oxidative stress and antioxidant system in rats with experimental myocardial damage.
Materials and methods. Myocardial damage was induced in rats by combined administrations of pituitrin and isoproterenol (PIMD) for two days. Animals were divided into four groups (n = 10): 1 – control group; 2 – PIMD-group; 3 – rats were injected with corvitin (C) for 5 days after PIMD, 4 – administered inspra (I) for 5 days after PIMD. Behavioral reactions of rats were examined by open field test. The indicators of carbonyl/oxidative stress, levels of thiobarbituric acid reactive substances (TBARS), glycated end products (AGEs), oxidative modification of proteins (OMP), were investigated in plasma. The activity of superoxide dismutase (SOD), catalase, glutathione peroxidase (GP), and glutathione reductase (GR) were analyzed in plasma and red blood cells.
Results and discussion. In PIMD-group changes of physiological and biochemical indicators characteristic of the ischemic state were observed. The levels of TBARS, AGEs, and OMP in the rats blood was significantly increased. The activity of catalase in the blood decreased by 2.2 times, and the level of GP increased. The activity of other enzymes did not change significantly. After treatment of C and I significant changes in the studied parameters were determined: heart rate and ECG dynamics returned to normal, the levels of TBARS, OMB and AGEs were reduced to almost the initial values.
Conclusions. The cardiotherapeutic effect of inspra is partly due to its antioxidant properties, which were more pronounced than after exposure to the classical antioxidant corvitin.

Author Biography

V. A. Tkachenko, SE “Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine”

aspirant, assistant of the Department of Biochemistry and Medical Chemistry

References

Rani, V., Deep, G., Singh, R. K., Palle, K., Yadav, U. C. S. (2016). Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sciences, 148, 183–193. doi: 10.1016/j.lfs.2016.02.002

Frijhoff, J., Winyard, P. G., Zarkovic, N., Davies, S. S., Stocker, R., Cheng, D., Ghezzi, P. (2015). Clinical Relevance of Biomarkers of Oxidative Stress. Antioxidants & Redox Signaling, 23 (14), 1144–1170. doi: 10.1089/ars.2015.6317

Berlett, B. S., Stadtman, E. R. (1997). Protein Oxidation in Aging, Disease, and Oxidative Stress. Journal of Biological Chemistry, 272 (33), 20313–20316. doi: 10.1074/jbc.272.33.20313

Gubskii, Yu. I.(2015). Smert kletki: Svobodnye radikaly, nekroz, apoptoz. Vinnitca: Nova kniga, 360.

Davydov, V. V., Bozhkov, A. I. (2014). Zhurnal Natsionalnoi akademii medychnykh nauk Ukrainy, 20 (1), 25–34. Available at: http://nbuv.gov.ua/UJRN/jnamnu_2014_20_1_5

Rabbani, N., Thornalley, P. J. (2015). Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochemical and Biophysical Research Communications, 458 (2), 221–226. doi: 10.1016/j.bbrc.2015.01.140

Ansari, N. A., Rashid, Z. (2010). Biomeditcinskaia khimiia, 56 (2), 168–178.

Falcone, C. (2005). Plasma Levels of Soluble Receptor for Advanced Glycation End Products and Coronary Artery Disease in Nondiabetic Men. Arteriosclerosis, Thrombosis, and Vascular Biology, 25 (5), 1032–1037. doi: 10.1161/01.atv.0000160342.20342.00

Nowotny, K., Jung, T., Höhn, A., Weber, D., Grune, T. (2015). Advanced Glycation End Products and Oxidative Stress in Type 2 Diabetes Mellitus. Biomolecules, 5 (1), 194–222. doi: 10.3390/biom5010194

Jack, M., Wright, D. (2012). Role of advanced glycation endproducts and glyoxalase I in diabetic peripheral sensory neuropathy. Translational Research, 159 (5), 355–365. doi: 10.1016/j.trsl.2011.12.004

Wannamethee, S. G., Welsh, P., Papacosta, O., Ellins, E. A., Halcox, J. P. J., Whincup, P. H., Sattar, N. (2017). Circulating soluble receptor for advanced glycation end product: Cross–sectional associations with cardiac markers and subclinical vascular disease in older men with and without diabetes. Atherosclerosis, 264, 36–43. doi: 10.1016/j.atherosclerosis.2017.07.008

Jin, H.–B., Yang, Y.–B., Song, Y.–L., Zhang, Y., Li, Y.–R. (2012). Protective roles of quercetin in acute myocardial ischemia and reperfusion injury in rats. Molecular Biology Reports, 39 (12), 11005–11009. doi: 10.1007/s11033–012–2002–4

Zannad, F., Radauceanu, A. (2005). Effect of MR Blockade on Collagen Formation and Cardiovascular Disease with a Specific Emphasis on Heart Failure. Heart Failure Reviews, 10 (1), 71–78. doi: 10.1007/s10741–005–2351–3

Belenichev, I.F., Kucherenko L. I. et al. (2012). Eksperimentalnaia i klinicheskaia fiziologiia i biokhimiia, 2, 7–11.

Paronik, V. А., Shaulska, O. Е., Diachenko, L. М. et al. (2016). Visnyk DNU, 7 (1), 27–31.

Buresh, Ya., Bureshova, O., Hiuston, D. P. (1991). Metodiki i osnovnye eksperimenty po izucheniiu mozga i povedeniia. Moscow: Vysshaia shkola, 352.

Ovsiannikova, L. M., Alokhina, S. M., Drobinska, O. V. et al. (1999). Biokhimichni ta biofizychni metody otsinky porushen okysliuvalnoho hemostazu v osib, shcho zaznaly radiatsiinoho vplyvu vnaslidok avarii na ChAES. Kyiv: ChornobylInterInform, 18.

Dubinina, Е. Е., Burmistrov, S. О., Khodov, D. А. et al. (1995). Voprosy med. khimii, 41 (1), 24–26.

Shevtsova, A. I., Tkachenko, V. A., Koval, O. A. et al. (2017). Sposib vyznachennia fluorestsiiuiuchykh kintsevykh produktiv hlikatsii u plazmi krovi. Pat. 116929 UA, MPК G 01 N 1/00, 21/39, 21/64, 33/49 /; declared 21.12.2016; pubished. 12.06.2017, № 11.

Kostiuk, V. A., Potapovich, A. I., Afanasev, I.B. (1987). Laboratornoe delo, 1, 4–9.

Vasilev, V. S., Novitskii G. K. et al. (1988). Laboratornoe delo, 1, 16–19.

Razygraev, A. V. (2004). Kliniko–laboratornyi konsilium, 44, 19–22.

Krylskii, E. D., Popova, T. N., Kirilova, E. M. (2015). Activity of Glutathione Antioxidant System and NADPH–Generating Enzymes in Rats with Experimental Rheumatoid Arthritis. Bulletin of Experimental Biology and Medicine, 160 (1), 24–27. doi: 10.1007/s10517–015–3089–0

Bradford, M. (1976). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein–Dye Binding. Analytical Biochemistry, 72 (1–2), 248–254. doi: 10.1006/abio.1976.9999

Gurova, N. A., Kharitonova, M. V., Panshin, N. G. et al. (2012). Volgogradskii nauchno–meditsinskii zhurnal, 2, 51–54.

Maslov, L. N., Arbuzov, A. G., Bashelkhanova, T. S. et al. (2009). Vіsnyk THPU, 3 (81), 16–21.

Monich, V. A., Bavrina, A. P., Malinovskaia, S. L. et al. (2015). Sovremennye problemy nauki i obrazovaniia, 2 (2). Available at: http://www.science–education.ru/ru/article/view?id=22486

De Mello, W. C. (2006). Beneficial Effect of Eplerenone on Cardiac Remodelling and Electrical Properties of the Failing Heart. Journal of the Renin–Angiotensin–Aldosterone System, 7 (1), 40–46. doi: 10.3317/jraas.2006.005

Zhang, H., Shen, Y., Wang, W. et al. (2015). Rat model of focal cerebral ischemia in the dominant hemisphere. Int Med, 8 (1), 504–511.

Voskresenskaya, O. N., Zakharova, N. B., Ivanov, M. V. (2017). Mechanisms of development of chronic cerebral ischemia in arterial hypertension. Zhurnal Nevrologii i Psikhiatrii im. S. S. Korsakova, 117 (2), 68. doi: 10.17116/jnevro20171172168–71

Balkaya, M., Kröber, J. M., Rex, A., Endres, M. (2012). Assessing Post–Stroke Behavior in Mouse Models of Focal Ischemia. Journal of Cerebral Blood Flow & Metabolism, 33 (3), 330–338. doi: 10.1038/jcbfm.2012.185

Chekman, I.S., Datsiuk, N. O., Lukianova, O. M. et al. (2008). Liky Ukrainy, 6 (122), 76–81.

Reddy, N. M., Mahajan, U. B., Patil, C. R. et al. (2015). Eplerenone attenuates cardiac dysfunction and oxidative stress in β–receptor stimulated myocardial infarcted rats. Am J Transl Res, 7 (9), 1602–1611.

Nishiyama, A., Yao, L., Nagai, Y., Miyata, K., Yoshizumi, M., Kagami, S., Abe, Y. (2004). Possible Contributions of Reactive Oxygen Species and Mitogen–Activated Protein Kinase to Renal Injury in Aldosterone/Salt–Induced Hypertensive Rats. Hypertension, 43 (4), 841–848. doi: 10.1161/01.hyp.0000118519.66430.22

Zhou, G., Johansson, U., Xiao–Rong, Peng et al. (2016). An additive effect of eplerenone to ACE inhibitor on slowing the progression of diabetic nephropathy in the db/db mice. Am J Transl Res, 8 (3), 1339–1354.

Zhang, X., Liu, J., Pang, X., Zhao, J., Xu, S., Zhao, J. (2017). Eplerenone inhibits aldosterone–induced CRP generation in rat vascular smooth muscle cells by regulating the MR–ROS–ERK1/2 signal pathway. European Journal of Inflammation, 15 (3), 210–218. doi: 10.1177/1721727x17735261

Rabbani, N., Xue, M., Thornalley, P. J. (2016). Dicarbonyls and glyoxalase in disease mechanisms and clinical therapeutics. Glycoconjugate Journal, 33 (4), 513–525. doi: 10.1007/s10719–016–9705–z

Chen, X., Mori, T., Guo, Q., Hu, C., Ohsaki, Y., Yoneki, Y., Ito, S. (2013). Carbonyl stress induces hypertension and cardio–renal vascular injury in Dahl salt–sensitive rats. Hypertension Research, 36 (4), 361–367. doi: 10.1038/hr.2012.204

Kazimirko, V.K. (2006). Zdorovia Ukrainy, 98, 21–24.

Bakala, H., Hamelin, M., Mary, J., Borot–Laloi, C., Friguet, B. (2012). Catalase, a target of glycation damage in rat liver mitochondria with aging. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 1822 (10), 1527–1534. doi: 10.1016/j.bbadis.2012.05.016

Published

2018-06-12

Issue

Section

No Section