Hyaluronic acid: biosynthesis and application

Authors

DOI:

https://doi.org/10.24959/ubphj.19.212

Keywords:

hyaluronic acid, biopolymers, microbial synthesis, medicine, cosmetology, optimization of biosynthesis

Abstract

Topicality. Hyaluronic acid with its antimicrobial and antiviral properties has found applications in medicine and cosmetics. Due to the high molecular weight, it prolongs the action of the active pharmaceutical components. The application spectrum of hyaluronic acid and hyaluronic acid-based products is increasing permanently. Therefore, new microbial producers of hyaluronic acid and new technologies for its biosynthesis are intensively developed. 

Aim. To compile integration of the advances in producers selection, and advances in the development of technologies and the hyaluronic acid applications.

Results and discussion. The strains from the genera Streptococcus and Pasteurella are the main bacterial producers of hyaluronic acid. However, they are able to synthesize hyaluronic acid in concentrations lower than 7 g/l after 120 hours of cultivation and their use limited by potential pathogenic properties. To improve technological parameters of biosynthesis, new genetically modified strains of Lactococcus lactis, Corynebacterium glutamicum, Escherichia coli, and Pichia pastoris were constructed. The highest yield of hyaluronic acid, 8.3 g/l , is observed during the cultivation of C. glutamicum for 48 hours.

Conclusions. Searching and construction of new hyaluronic acid producers and  biotechnological improving when cultivated are the major points in the development of hyaluronic acid production for pharmaceuticals and cosmetic applications.

Author Biographies

I. V. Lych, National University of Food Technologies

PhD, Associate Professor Department of Biotechnology and Microbiology

A. O. Uhryn, National University of Food Technologies

Master’s student Program Subject Area 162 “Biotechnology and Bioengineering”, Еducational program “Industrial Biotechnology”

I. M. Voloshina, Kyiv National University of Technologies and DesignHyaluronic acid: biosynthesis and application

PhD, Associate Professor of Department biotechnology, leather and furs

References

Romanò, C. L., De Vecchi, E., Bortolin, M., Morelli, I., & Drago, L. (2017). Hyaluronic Acid and Its Composites as a Local Antimicrobial/Antiadhesive Barrier. Journal of Bone and Joint Infection, 2(1), 63–72.https://doi.org/10.7150/jbji.17705

Sze, J. H., Brownlie, J. C., & Love, C. A. (2016). Biotechnological production of hyaluronic acid: a mini review. 3 Biotech, 6(1).https://doi.org/10.1007/s13205-016-0379-9

Neuman, M. G., Nanau, R. M., Oruña-Sanchez, L., Coto, G. (2015). Hyaluronic acid and wound healing. J. Pharm. Pharm. Sci, 18( 1), 53–60.

Liu, L., Liu, Y., Li, J., Du, G., & Chen, J. (2011). Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microbial Cell Factories, 10(1), 99. https://doi.org/10.1186/1475-2859-10-99

Oe, M., Mitsugi, K., Odanaka, W., Yoshida, H., Matsuoka, R., Seino, S., … Masuda, Y. (2014). Dietary Hyaluronic Acid Migrates into the Skin of Rats. The Scientific World Journal, 2014, 1–8. https://doi.org/10.1155/2014/378024

De Oliveira, J. D., Carvalho, L. S., Gomes, A. M. V., Queiroz, L. R., Magalhães, B. S., & Parachin, N. S. (2016). Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microbial Cell Factories, 15(1). https://doi.org/10.1186/s12934-016-0517-4

Pires, A. M. B., Eguchi, S. Y., & Santana, M. H. A. (2010). The Influence of Mineral Ions on the Microbial Production and Molecular Weight of Hyaluronic Acid. Applied Biochemistry and Biotechnology, 162(8), 2125–2135.https://doi.org/10.1007/s12010-010-8987-z

Pires, A. M. B., Macedo, A. C., Eguchi, S. Y., & Santana, M. H. A. (2010). Microbial production of hyaluronic acid from agricultural resource derivatives. Bioresource Technology, 101(16), 6506–6509. https://doi.org/10.1016/j.biortech.2010.03.074 .

Oliveira, A. H., Ogrodowski, C. C., Macedo, A. C. de, Santana, M. H. A., & Gonçalves, L. R. B. (2013). Cashew apple juice as microbial cultivation medium for non-immunogenic hyaluronic acid production. Brazilian Journal of Microbiology, 44(4), 1097–1104. https://doi.org/10.1590/s1517-83822014005000017

Pan, N. C., Pereira, H. C. B., da Silva, M. de L. C., Vasconcelos, A. F. D., & Celligoi, M. A. P. C. (2016). Improvement Production of Hyaluronic Acid by Streptococcus zooepidemicus in Sugarcane Molasses. Applied Biochemistry and Biotechnology, 182(1), 276–293. https://doi.org/10.1007/s12010-016-2326-y .

Pan, N. C., Vignoli, J. A., Baldo, C., Pereira, H. C. B., Silva, R. S. S. F., Celligoi, M. A.P.C. (2015). Agroindustrial byproducts for the production of hyaluronic acid by Streptococcus zooepidemicus ATCC 39920. International J. Scien Technol. Res, 4 (4), 114–118.

Lych, I., Voloshina, I., Peklo, A. (2013). Liposomes as a remedy of targeted drug delivery. Ukrainian Food Journal, 3( 2), 374–383.

Vázquez, J., Pastrana, L., Piñeiro, C., Teixeira, J., Pérez-Martín, R., & Amado, I. (2015). Production of Hyaluronic Acid by Streptococcus zooepidemicus on Protein Substrates Obtained from Scyliorhinus canicula Discards. Marine Drugs, 13(10), 6537–6549. https://doi.org/10.3390/md13106537

Prasad, S. B., Ramachandran, K. B., & Jayaraman, G. (2012). Transcription analysis of hyaluronan biosynthesis genes in Streptococcus zooepidemicus and metabolically engineered Lactococcus lactis. Applied Microbiology and Biotechnology, 94(6), 1593–1607. https://doi.org/10.1007/s00253-012-3944-0

Nešvera, J., & Pátek, M. (2011). Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Applied Microbiology and Biotechnology, 90(5), 1641–1654. https://doi.org/10.1007/s00253-011-3272-9

Cheng, F., Gong, Q., Yu, H., & Stephanopoulos, G. (2016). High-titer biosynthesis of hyaluronic acid by recombinantCorynebacterium glutamicum. Biotechnology Journal, 11(4), 574–584. https://doi.org/10.1002/biot.201500404

Jeong, E., Shim, W. Y., & Kim, J. H. (2014). Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight. Journal of Biotechnology, 185, 28–36. https://doi.org/10.1016/j.jbiotec.2014.05.018

Salwowska, N. M., Bebenek, K. A., Żądło, D. A., & Wcisło-Dziadecka, D. L. (2016). Physiochemical properties and application of hyaluronic acid: a systematic review. Journal of Cosmetic Dermatology, 15(4), 520–526. https://doi.org/10.1111/jocd.12237

Huang, G., & Huang, H. (2018). Application of hyaluronic acid as carriers in drug delivery. Drug Delivery, 25(1), 766–772. https://doi.org/10.1080/10717544.2018.1450910

Lukyanenko, T. V. (2011). Optimization of conditions the cultivation for hyaluronidase roduction by Streptococcus pyogenes. Annals of Mechnikov Institute, 2, 14–19. Available at: http://nbuv.gov.ua/UJRN/ ami_2011_2_5

Sokolov, Yu. V. (2008). Rozrobka ta standartizacіya substancії ta lіkars'koї formi gіaluronіdazi, otrimanoї z Staphylococcus aureus № 318.Candidate’s thesis. Kharkіv, 154.

Zajchenko, G. V., Gorchakova, N. O., Striga, O. A., Yakovlva, N. Yu., Ruban, O. І. (2017). Vіsnik problem bіologії ta medicini, 1(135), 33–42. Available at: http://nbuv.gov.ua/UJRN/Vpbm_2017_1_6.

Volovar, O. S., Malanchuk, V. O. (2014). Novyny stomatolohii, 2, 76–81. Available at: http://nbuv.gov.ua/UJRN/Ns_2014_2_18.

Kostrub, O. O., Zasadniuk, A. І., Zaiets, V. B., Manzhalii, V. V. (2010). Zdorov’ia Ukrainy, 32–33.

Rubel, M. O., Voloshyna, I. M. (2014). Naukovi pratsi Natsionalnoho universytetu kharchovykh, 2(20), 23–29.

Stakhovskyi, E. O., Chepurnatyi, M. V.(2015). Zdorov’ia Ukrainy, 3, 6–7.

Riedl, C. R., Engelhardt, P. F., Daha, K. L., Morakis, N., & Pflüger, H. (2007). Hyaluronan treatment of interstitial cystitis/painful bladder syndrome. International Urogynecology Journal, 19(5), 717–721. https://doi.org/10.1007/s00192-007-0515-5

Lych, I. V., Doroshko, Yu. M., Borodina, O. O., Shulzhenko, V. S. (2017). Naukovi pratsi Natsionalnoho universytetu kharchovykh tekhnolohii, 23 (1), 66–74.

Shkotova, L. V., Woloshina, I. M., Kovalchuk, V. V., Zhybak, M. T., & Dzyadevych, S. V. (2018). Amperometric glucose biosensor with the IrNPs/Ludox – modified enzyme matrix. Biopolymers and Cell, 34(5), 367–373. https://doi.org/10.7124/bc.000984

Bardova, K. O., Bardov, P. V., Koliadenko, V. H. (2004). Ukrainskyi zhurnal dermatolohii, venerolohii, kosmetolohii, 4, 56–60.

Stellavato, A., Corsuto, L., D’Agostino, A., La Gatta, A., Diana, P., Bernini, P., … Schiraldi, C. (2016). Hyaluronan Hybrid Cooperative Complexes as a Novel Frontier for Cellular Bioprocesses Re-Activation. PLOS ONE, 11(10). https://doi.org/10.1371/journal.pone.0163510 .

Eroshkin, E., Lata, Ya. (2015). Nuvel' Jestetik, 4, 30–31. Available at: https://oberig.ua/media/files/Predermal.pdf

Sliusar, H. V., Peredera R. V., Sobchyshyna T. M. (2016). Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii im. S.Z. Gzhytskoho. Seriia: Veterynarni nauky, 18(1), 148–153.Available at: http://dspace.pdaa.edu.ua:8080/handle/123456789/904

Bur’ianov, O. A., Omelchenko, T. M. (2011). Zvit pro naukovo-doslidnu robotu, 54.

Published

2019-05-21

Issue

Section

Review articles