Hyaluronic acid: biosynthesis and application
DOI:
https://doi.org/10.24959/ubphj.19.212Keywords:
hyaluronic acid, biopolymers, microbial synthesis, medicine, cosmetology, optimization of biosynthesisAbstract
Topicality. Hyaluronic acid with its antimicrobial and antiviral properties has found applications in medicine and cosmetics. Due to the high molecular weight, it prolongs the action of the active pharmaceutical components. The application spectrum of hyaluronic acid and hyaluronic acid-based products is increasing permanently. Therefore, new microbial producers of hyaluronic acid and new technologies for its biosynthesis are intensively developed.
Aim. To compile integration of the advances in producers selection, and advances in the development of technologies and the hyaluronic acid applications.
Results and discussion. The strains from the genera Streptococcus and Pasteurella are the main bacterial producers of hyaluronic acid. However, they are able to synthesize hyaluronic acid in concentrations lower than 7 g/l after 120 hours of cultivation and their use limited by potential pathogenic properties. To improve technological parameters of biosynthesis, new genetically modified strains of Lactococcus lactis, Corynebacterium glutamicum, Escherichia coli, and Pichia pastoris were constructed. The highest yield of hyaluronic acid, 8.3 g/l , is observed during the cultivation of C. glutamicum for 48 hours.
Conclusions. Searching and construction of new hyaluronic acid producers and biotechnological improving when cultivated are the major points in the development of hyaluronic acid production for pharmaceuticals and cosmetic applications.
References
Romanò, C. L., De Vecchi, E., Bortolin, M., Morelli, I., & Drago, L. (2017). Hyaluronic Acid and Its Composites as a Local Antimicrobial/Antiadhesive Barrier. Journal of Bone and Joint Infection, 2(1), 63–72.https://doi.org/10.7150/jbji.17705
Sze, J. H., Brownlie, J. C., & Love, C. A. (2016). Biotechnological production of hyaluronic acid: a mini review. 3 Biotech, 6(1).https://doi.org/10.1007/s13205-016-0379-9
Neuman, M. G., Nanau, R. M., Oruña-Sanchez, L., Coto, G. (2015). Hyaluronic acid and wound healing. J. Pharm. Pharm. Sci, 18( 1), 53–60.
Liu, L., Liu, Y., Li, J., Du, G., & Chen, J. (2011). Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microbial Cell Factories, 10(1), 99. https://doi.org/10.1186/1475-2859-10-99
Oe, M., Mitsugi, K., Odanaka, W., Yoshida, H., Matsuoka, R., Seino, S., … Masuda, Y. (2014). Dietary Hyaluronic Acid Migrates into the Skin of Rats. The Scientific World Journal, 2014, 1–8. https://doi.org/10.1155/2014/378024
De Oliveira, J. D., Carvalho, L. S., Gomes, A. M. V., Queiroz, L. R., Magalhães, B. S., & Parachin, N. S. (2016). Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microbial Cell Factories, 15(1). https://doi.org/10.1186/s12934-016-0517-4
Pires, A. M. B., Eguchi, S. Y., & Santana, M. H. A. (2010). The Influence of Mineral Ions on the Microbial Production and Molecular Weight of Hyaluronic Acid. Applied Biochemistry and Biotechnology, 162(8), 2125–2135.https://doi.org/10.1007/s12010-010-8987-z
Pires, A. M. B., Macedo, A. C., Eguchi, S. Y., & Santana, M. H. A. (2010). Microbial production of hyaluronic acid from agricultural resource derivatives. Bioresource Technology, 101(16), 6506–6509. https://doi.org/10.1016/j.biortech.2010.03.074 .
Oliveira, A. H., Ogrodowski, C. C., Macedo, A. C. de, Santana, M. H. A., & Gonçalves, L. R. B. (2013). Cashew apple juice as microbial cultivation medium for non-immunogenic hyaluronic acid production. Brazilian Journal of Microbiology, 44(4), 1097–1104. https://doi.org/10.1590/s1517-83822014005000017
Pan, N. C., Pereira, H. C. B., da Silva, M. de L. C., Vasconcelos, A. F. D., & Celligoi, M. A. P. C. (2016). Improvement Production of Hyaluronic Acid by Streptococcus zooepidemicus in Sugarcane Molasses. Applied Biochemistry and Biotechnology, 182(1), 276–293. https://doi.org/10.1007/s12010-016-2326-y .
Pan, N. C., Vignoli, J. A., Baldo, C., Pereira, H. C. B., Silva, R. S. S. F., Celligoi, M. A.P.C. (2015). Agroindustrial byproducts for the production of hyaluronic acid by Streptococcus zooepidemicus ATCC 39920. International J. Scien Technol. Res, 4 (4), 114–118.
Lych, I., Voloshina, I., Peklo, A. (2013). Liposomes as a remedy of targeted drug delivery. Ukrainian Food Journal, 3( 2), 374–383.
Vázquez, J., Pastrana, L., Piñeiro, C., Teixeira, J., Pérez-Martín, R., & Amado, I. (2015). Production of Hyaluronic Acid by Streptococcus zooepidemicus on Protein Substrates Obtained from Scyliorhinus canicula Discards. Marine Drugs, 13(10), 6537–6549. https://doi.org/10.3390/md13106537
Prasad, S. B., Ramachandran, K. B., & Jayaraman, G. (2012). Transcription analysis of hyaluronan biosynthesis genes in Streptococcus zooepidemicus and metabolically engineered Lactococcus lactis. Applied Microbiology and Biotechnology, 94(6), 1593–1607. https://doi.org/10.1007/s00253-012-3944-0
Nešvera, J., & Pátek, M. (2011). Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Applied Microbiology and Biotechnology, 90(5), 1641–1654. https://doi.org/10.1007/s00253-011-3272-9
Cheng, F., Gong, Q., Yu, H., & Stephanopoulos, G. (2016). High-titer biosynthesis of hyaluronic acid by recombinantCorynebacterium glutamicum. Biotechnology Journal, 11(4), 574–584. https://doi.org/10.1002/biot.201500404
Jeong, E., Shim, W. Y., & Kim, J. H. (2014). Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight. Journal of Biotechnology, 185, 28–36. https://doi.org/10.1016/j.jbiotec.2014.05.018
Salwowska, N. M., Bebenek, K. A., Żądło, D. A., & Wcisło-Dziadecka, D. L. (2016). Physiochemical properties and application of hyaluronic acid: a systematic review. Journal of Cosmetic Dermatology, 15(4), 520–526. https://doi.org/10.1111/jocd.12237
Huang, G., & Huang, H. (2018). Application of hyaluronic acid as carriers in drug delivery. Drug Delivery, 25(1), 766–772. https://doi.org/10.1080/10717544.2018.1450910
Lukyanenko, T. V. (2011). Optimization of conditions the cultivation for hyaluronidase roduction by Streptococcus pyogenes. Annals of Mechnikov Institute, 2, 14–19. Available at: http://nbuv.gov.ua/UJRN/ ami_2011_2_5
Sokolov, Yu. V. (2008). Rozrobka ta standartizacіya substancії ta lіkars'koї formi gіaluronіdazi, otrimanoї z Staphylococcus aureus № 318.Candidate’s thesis. Kharkіv, 154.
Zajchenko, G. V., Gorchakova, N. O., Striga, O. A., Yakovlva, N. Yu., Ruban, O. І. (2017). Vіsnik problem bіologії ta medicini, 1(135), 33–42. Available at: http://nbuv.gov.ua/UJRN/Vpbm_2017_1_6.
Volovar, O. S., Malanchuk, V. O. (2014). Novyny stomatolohii, 2, 76–81. Available at: http://nbuv.gov.ua/UJRN/Ns_2014_2_18.
Kostrub, O. O., Zasadniuk, A. І., Zaiets, V. B., Manzhalii, V. V. (2010). Zdorov’ia Ukrainy, 32–33.
Rubel, M. O., Voloshyna, I. M. (2014). Naukovi pratsi Natsionalnoho universytetu kharchovykh, 2(20), 23–29.
Stakhovskyi, E. O., Chepurnatyi, M. V.(2015). Zdorov’ia Ukrainy, 3, 6–7.
Riedl, C. R., Engelhardt, P. F., Daha, K. L., Morakis, N., & Pflüger, H. (2007). Hyaluronan treatment of interstitial cystitis/painful bladder syndrome. International Urogynecology Journal, 19(5), 717–721. https://doi.org/10.1007/s00192-007-0515-5
Lych, I. V., Doroshko, Yu. M., Borodina, O. O., Shulzhenko, V. S. (2017). Naukovi pratsi Natsionalnoho universytetu kharchovykh tekhnolohii, 23 (1), 66–74.
Shkotova, L. V., Woloshina, I. M., Kovalchuk, V. V., Zhybak, M. T., & Dzyadevych, S. V. (2018). Amperometric glucose biosensor with the IrNPs/Ludox – modified enzyme matrix. Biopolymers and Cell, 34(5), 367–373. https://doi.org/10.7124/bc.000984
Bardova, K. O., Bardov, P. V., Koliadenko, V. H. (2004). Ukrainskyi zhurnal dermatolohii, venerolohii, kosmetolohii, 4, 56–60.
Stellavato, A., Corsuto, L., D’Agostino, A., La Gatta, A., Diana, P., Bernini, P., … Schiraldi, C. (2016). Hyaluronan Hybrid Cooperative Complexes as a Novel Frontier for Cellular Bioprocesses Re-Activation. PLOS ONE, 11(10). https://doi.org/10.1371/journal.pone.0163510 .
Eroshkin, E., Lata, Ya. (2015). Nuvel' Jestetik, 4, 30–31. Available at: https://oberig.ua/media/files/Predermal.pdf
Sliusar, H. V., Peredera R. V., Sobchyshyna T. M. (2016). Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii im. S.Z. Gzhytskoho. Seriia: Veterynarni nauky, 18(1), 148–153.Available at: http://dspace.pdaa.edu.ua:8080/handle/123456789/904
Bur’ianov, O. A., Omelchenko, T. M. (2011). Zvit pro naukovo-doslidnu robotu, 54.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 National University of Pharmacy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).