Biochemical role of pancreatic NMDA receptors in the pathogenesis of carbohydrate metabolism disorders


  • Т. Briukhanova National University of Pharmacy of the Ministry of Health of Ukraine
  • L. Galuzinska National University of Pharmacy of the Ministry of Health of Ukraine



type 2 diabetes, insulin resistance, pancreatic NMDA receptors, carbohydrate metabolism


According to World Health Organization expert estimates, type 2 diabetes mellitus (DM2) remains the most common disease, which characterized by persistent disorders of almost all metabolic links.

Aim. To conduct an analytical review of available literature on the biochemical role of pancreatic NMDA receptors in the pathogenesis of carbohydrate metabolism disorders.

Materials and methods. Open-source analysis of the academic and scientific literature.

Results and discussion. According to the examined data, modulation of the activity of extraneuronal receptors, such as pancreatic NMDA receptors, may affect the regulation of carbohydrate metabolism, in particular glucose-stimulated insulin secretion and blood glucose homeostasis. Therefore, it is considered to be of high relevance to study those drugs that block pancreatic receptors to use them as the basis in the creation of new antidiabetic drugs.

Conclusions. NMDAR antagonists can be considered as new potential antidiabetic drugs that not only normalize blood glucose levels, but also have a protective effect onto islet cells. The use of NMDAR antagonists as adjunctive therapy in diabetes mellitus pharmacological correction regimens may be useful in inhibiting disease progression.

Author Biographies

Т. Briukhanova, National University of Pharmacy of the Ministry of Health of Ukraine

Candidate of Biological Sciences, assistant of the Department of Biological Chemistry

L. Galuzinska, National University of Pharmacy of the Ministry of Health of Ukraine

Candidate of Pharmacy (Ph.D), associate professor of Department of the biological chemistry department


Marquard, J., Otter, S., Welters, A., Stirban, A., Fischer, A., Eglinger, J. (2015). Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment. Nat Med., 21 (4), 363–372. doi: 10.1038/nm.3822.

Hashimoto, K. (2017). The NMDA receptors. Cham : SpringerInternational Publishing.

Soltani, N., Qiu, H., Aleksic, M., Glinka, Y., Zhao, F., Liu, R. et al (2011). GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proc Natl Acad Sci U S A, 108 (28), 11692–11697. doi: 10.1073/pnas.1102715108.

Rodriguez-Diaz, R., Dando, R., Huang, Y. A., Berggren, P. O., Roper, S. D., Caicedo, A. (2012). Real-time detection of acetylcholine release from the human endocrine pancreas. Nat Protoc, 7 (6), 1015–1023. doi: 10.1038/nprot.2012.040.

Konstantinova, I., Nikolova, G., Ohara-Imaizumi, M., Meda, P., Kucera, T., Zarbalis, K. et al. (2007). EphA-Ephrin-A-mediated beta cell communication regulates insulin secretion from pancreatic islets. Cell, 129 (2), 359–370. doi: 10.1016/j.cell.2007.02.044.

Platt, S. R. (2007). The role of glutamate in central nervous system health and disease - a review. Vet J, 173 (2), 278–286. doi: 10.1016/j.tvjl.2005.11.007.

Di Cairano, E. S., Davalli, A. M., Perego, L., Sala, S., Sacchi, V. F., La Rosa, S. et al. (2011). The Glial Glutamate Transporter 1 (GLT1) is expressed by Pancreatic beta-cells and prevents Glutamate-induced beta-cell death. J Biol Chem, 286 (16), 14007–1418. doi: 10.1074/jbc.M110.183517.

Feldmann, N., del Rio, R. M., Gjinovci, A., Tamarit-Rodriguez, J., Wollheim, C. B., Wiederkehr, A. (2011). Reduction of plasma membrane glutamate transport potentiates insulin but not glucagon secretionin pancreatic islet cells. Mol Cell Endocrinol, 338 (1–2), 46–57. doi: 10.1016/j.mce.2011.02.019.

Storto, M., Capobianco, L., Battaglia, G., Molinaro, G., Gradini, R., Riozzi, B. et al. (2006). Insulin secretionis controlled by mGlu5 metabotropic glutamate receptors. Mol Pharmacol, 69 (4), 1234–1241. doi: 10.1124/mol.105.018390.

Otter, S., Lammert, E. (2016). Exciting times for pancreatic islets: Glutamate signaling in endocrine cells. Trends Endocrinol Metabolism, 27 (3), 177–188. doi: 10.1016/j.tem.2015.12.004.

Gheni, G., Ogura, M., Iwasaki, M., Yokoi, N., Minami, K., Nakayama, Y. et al. (2014). Glutamate acts as akey signal linking glucose metabolism to Incretin/cAMP action to amplify insulin secretion. Cell Rep, 9 (2), 661–673. doi: 10.1016/j.celrep.2014.09.030.

Cabrera, O., Jacques-Silva, M. C., Speier, S., Yang, S. N., Kohler, M., Fachado, A. et al. (2008). Glutamate is apositive autocrine signal for glucagon release. Cell Metab, 7 (6), 545–554. doi: 10.1016/j.cmet.2008.03.004.

Omar, B., Sorhede-Winzell, M., Ahren, B. (2014). Conditional glucagon receptor overexpression hasmulti-faceted consequences for beta-cell function. Metabolism, 63 (12), 1568–1576. doi: 10.1016/j.metabol.2014.09.004.

Wu, Z. Y., Zhu, L. J., Zou, N., Bombek, L. K., Shao, C. Y., Wang, N. et al. (2012). AMPA receptors regulateexocytosis and insulin release in pancreatic beta cells. Traffic, 13 (8), 1124–39. doi: 10.1111/j.1600-0854.2012.01373.x.

Hawkins, R. A. (2009). The blood-brain barrier and glutamate. Am J Clin Nutr, 90 (3), 867S–874S. doi: 10.3945/ajcn.2009.27462BB.

Kalia, L. V., Kalia, S. K., Salter, M. W. (2008). NMDA receptors in clinical neurology: excitatory times head. Lancet Neurol, 7 (8), 742–55. doi: 10.1016/S1474-4422(08)70165-0.

Gupta, K., Hardingham, G. E., Chandran, S. (2013). NMDA receptor-dependent glutamate excitotoxicityin human embryonic stem cell-derived neurons. Neurosci Lett, 543, 95–100. doi: 10.1016/j.neulet.2013.03.010.

Lutz, T. A., Meyer, U. (2015). Amylin at the interface between metabolic and neurodegenerative disorders. Front Neurosci, 9, 216. doi: 10.3389/fnins.2015.00216.

Eizirik, D. L., Cardozo, A. K., Cnop, M. (2008). The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev, 29 (1), 42–61. doi: 10.1210/er.2007-0015.

Ye, L., Huang, Y., Zhao, L., Li, Y., Sun, L., Zhou, Y. et al. (2013). IL-1beta and TNF-alpha induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase. J Neurochem, 125 (6), 897–908. doi: 10.1111/jnc.12263.

Paoletti, P., Bellone, C., Zhou, Q. (2013). NMDA receptor subunit diversity: impact on receptor properties,synaptic plasticity and disease. Nat Rev Neurosci, 14 (6), 383–400. doi: 10.1038/nrn3504.

Lechin, F., van der Dijs, B., Pardey-Maldonado, B., Rivera, J. E., Lechin, M. E., Baez, S. (2009). Amantadinereduces glucagon and enhances insulin secretion throughout the oral glucose tolerance test: central plus peripheral nervous system mechanisms. Diabetes Metab Syndr Obes, 2, 203–213. doi: 10.2147/dmsott.s7606.

Shen, K. Z., Johnson, S. W. (2010). Ca2+ influx through NMDA-gated channels activates ATP-sensitiveK+ currents through a nitric oxide-cGMP pathway in subthalamic neurons. J Neurosci, 30 (5), 1882–1893. doi: 10.1523/JNEUROSCI.3200-09.2010.

Shen, K. Z., Yakhnitsa, V., Munhall, A. C., Johnson, S. W. (2014). AMP kinase regulates K-ATP currentsevoked by NMDA receptor stimulation in rat subthalamic nucleus neurons. Neuroscience, 274, 138–152. doi: 10.1016/j.neuroscience.2014.05.031.

Donath, M. Y. (2014). Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov, 13 (6), 465–76. doi: 10.1038/nrd4275.

Wollheim, C. B., Maechler, P. (2015). Beta cell glutamate receptor antagonists: novel oral antidiabetic drugs? Nat Med, 21 (4), 310–311. doi: 10.1038/nm.3835.

Marquard, J., Stirban, A., Schliess, F., Sievers, F., Welters, A., Otter, S. et al. (2016). Effects of dextromethorphanas add-on to sitagliptin on blood glucose and serum insulin concentrations inindividuals with type 2 diabetes mellitus: a randomized, placebo-controlled, double-blinded,multiple crossover, single-dose clinical trial. Diabetes Obes Metab, 18 (1), 100–103. doi: 10.1111/dom.12576.

Garnock-Jones, K. P. (2011). Dextromethorphan/quinidine: in pseudobulbar affect. CNS Drugs, 25 (5), 435–445. doi: 10.2165/11207260-000000000-00000.

Dicpinigaitis, P. V. (2015). Clinical perspective - cough: an unmet need. Curr Opin Pharmacol, 22, 24–28. doi: 10.1016/j.coph.2015.03.001.

Werling, L. L., Lauterbach, E. C., Calef, U. (2007). Dextromethorphan as a potential neuroprotective agentwith unique mechanisms of action. Neurologist, 13 (5), 272–93. doi: 10.1097/NRL.0b013e3180f60bd8.

Shin, E. J., Bach, J. H., Lee, S. Y., Kim, J. M., Lee, J., Hong, J. S. et al. (2011). Neuropsychotoxic and neuroprotectivepotentials of dextromethorphan and its analogs. J Pharmacol Sci, 116 (2), 137–148. doi: 10.1254/jphs.11R02CR.

Liu, S. L., Li, Y. H., Shi, G. Y., Tang, S. H., Jiang, S. J., Huang, C. W. et al. (2009). Dextromethorphan reducesoxidative stress and inhibits atherosclerosis and neointima formation in mice. Cardiovasc Res, 82 (1), 161–169. doi: 10.1093/cvr/cvp043.

Wu, T. C., Chao, C. Y., Lin, S. J., Chen, J. W. (2012). Low-dose dextromethorphan, a NADPH oxidase inhibitor,reduces blood pressure and enhances vascular protection in experimental hypertension. PLoS One, 7 (9), 460-467. doi: 10.1371/journal.pone.0046067.





Review articles