DOI: https://doi.org/10.24959/ubphj.20.292

The theoretical substantiation of the choice of active pharmaceutical ingredients to create a medicine for use in the preparation for childbirth

G. Melnik, T. Yarnykh, I. Herasymova

Abstract


Topicality. The rational preparation of the birth canal is an important task of modern obstetric practice since tears of the soft tissues of a woman in labor are a fairly common problem. Considering rather small number of drugs presented at the pharmaceutical market of Ukraine in the preparation for childbirth it is relevant and necessary to expand the range of drugs that will help reduction of soft tissue ruptures during childbirth.

Aim. To theoretically substantiate the choice of active pharmaceutical ingredients (API) for creating extemporaneous suppositories that help in the preparation of the birth canal and reduction of the rupture risk during childbirth.

Materials and methods. Diagnostic and analytical methods were used to review the literature. The main resource for finding information was electronic catalogs and databases of some educational institutions and research institutes.

Results and discussion. The expediency of introducing hyaluronic acid and some herbal extracts into an extemporaneous drug has been theoretically substantiated. When searching for scientific information and analyzing it, it has been found that the main function of hyaluronic acid is to regulate permeability of tissues, moisturize them, strengthen and increase protection against trauma. Regarding the use of CO2-extracts of aloe, green tea and calendula the necessity of their inclusion in the composition of a new extemporaneous drug has been determined due to the presence of a moisturizing, antiseptic, anti-inflammatory effect.

Conclusions. The expediency of using hyaluronic acid and CO2-extracts of aloe, green tea and calendula as active pharmaceutical ingredients when developing extemporaneous suppositories designed to reduce birth trauma to soft tissues has been proven.


Keywords


childbirth; trauma during childbirth; hyaluronic acid; CO2-extracts; suppositories

References


Podolskyi, V. V., Podolskyi, Vl. V. (2014). Zdorove zhenshchyny, 8 (94), 102-106.

Ulumbekova, E. H., Chelysheva, Yu. A. (Eds.). (2016). Histolohiia, embriolohiia, tsytolohiia. Moscow: GEOTAR-Medicina, 928.

Shcherbina, N. A., Bobritskaia, V. V., Lipko, O. P. (2017). Reproduktyvna endokrinolohіia, 6 (38), 91-95.

Vorobiova, L. I., Dunaievska, V. V., Honcharuk, I. V. (2014). Zdorovia zhinky, 8 (94), 60–62.

Dadak, C., Bayerle-Eder, M. (2015). Female sexual dysfunction. Obstetrics, Gynecology & Reproduction, 9 (4), 86–88. doi: https://doi.org/10.17749/2070-4968.2015.9.4.086-088.

Markowska, J., Madry, R., Markowska, A. (2011). The Effect of the hyaluronic acid (Cicatridina) on healing and regeneration of the uterine cervix and vagina and vulva dystrophy therapy. Eur J Gynaec Oncol., 32 (1), 65–68. Available at: https://www.eurolek.com.ua/the-effect-of-hyaluronic-acid-cicatridine-on-healing-and-regeneration-of-the-uterine-cervix-and-vagina-and-vulvar-dystrophy-therapy/.

Kaliuzhnaia, L. D., Sharmazan, S. I., Moiseeva, E. V., Bondarenko, I. N. (2009). Estetychna medytsyna, 10 (4), 44–46. Available at: http://www.health-medix.com/articles/anti_aging/2009-10-05/44-46.pdf.

Sihaeva, N. N., Kolesov, S. V., Nazarov, P. V., Vil’danova, R. R. (2012). Vestnik Bashkirskogo universiteta, 17 (3), 1220-1241. Available at: http://bulletin-bsu.com/archive/2012/3/4/

Svanovský, E. (2007). Fyziologie a farmakologie kyseliny hyaluronové. Česká a Slovenská farmacie, 56 (6), 264-268. Available at: https://www.prolekare.cz/casopisy/ceska-slovenska-farmacie/2007-6/fyziologie-a-farmakologie-kyseliny-hyaluronove-3227.

Price, R. D., Berry, M. G., Navsaria, H. A. (2007). Hyaluronic acid: the scientific and clinical evidence. Journal of Plastic, Reconstructive & Aesthetic Surgery, 60 (10), 1110-1119. doi: 10.1016/j.bjps.2007.03.005.

Kogan, G., Šoltés, S., Stern, R., Gemeiner, P. (2007). Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnology Letters, 29 (1), 17-25. doi: 10.1007/s10529-006-9219-z.

Stern, R. (2004). Hyaluronan catabolism: a new metabolic pathway. Eur J Cell Biol, 83 (7), 317–325. doi: 10.1078/0171-9335-00392.

Kahramano, I., Chen, Ch., Chen, J., Wan, Ch. (2019). Chemical Constituents, Antimicrobial Activity, and Food Preservative Characteristics of Aloe vera Gel. Agronomy, 9 (831), 1-18. doi: https://doi.org/10.3390/agronomy9120831.

Kim, J. H., Yoon, J. Y., Yang, S. Y. et al. (2017). Tyrosinase inhibitory components from Aloe vera and their antiviral activity. J Enzyme Inhib Med Chem, 32, 78–83. doi: 10.1080/14756366.2016.1235568.

Misir, J., Brishti, F. H., Hoque, M. M. (2014). Aloe vera gel as a novel edible coating for fresh fruits. A Review. Am. J. Food Sci. Technol, 2, 93–97. doi: 10.12691/ajfst-2-3-3.

Rehman, N. U., Hussain, H., Khiat, M., Khan, H. Y., Abbas, G., Green, I. R., Al-Harrasi, A. (2017). Bioactive chemical constituents from the resin of Aloe vera. Z. Nat. Sect. B-A J. Chem. Sci, 72, 955–958. doi: 10.1515/znb-2017-0117.

Zhong, J. S., Huang, Y. Y., Zhang, T. H. et al. (2015). Natural phosphodiesterase-4 inhibitors from the leaf skin of Aloe barbadensis Miller. Fitoterapia, 100, 68–74. doi: 10.1016/j.fitote.2014.11.018.

Hassanpour, H. (2015). Effect of Aloe vera gel coating on antioxidant capacity, antioxidant enzyme activities and decay in raspberry fruit. LWT-Food Sci. Technol, 60, 495–501. doi: 10.1016/j.lwt.2014.07.049.

Ashfaq, F., Butt, M. S., Bilal, A., Ansar, H., Suleria, R. (2019). Impact of solvent and supercritical fluid extracts of green tea on physicochemical and sensorial aspects of chicken soup. Agriculture and Food, 4 (3), 794–806. doi: 10.3934/agrfood.2019.3.794.

Ziaedini, A., Jafari, A., Zakeri, A. (2010). Extraction of antioxidants and caffeine from green tea (Camelia sinensis) leaves: Kinetics and modeling. Food Science and Technology International, 16, 505-510. doi: https://doi.org/10.1177/1082013210367567/.

Yarullin, L. Y., Gumerov, F. M., Hung, T. N., Gilmutdinov, I. I., Zaripov, Z. I., Gabitov, F. R., Remizov, A. B. (2016). The composition and structure of the tea leaves, processed in supercritical carbon dioxide. Butlerov Communications, 48 (11), 88-100. roi: jbc-02/16-48-11-88.

Arora, D., Rani, A., Sharma, A. (2013). A review on phytochemistry and ethnopharmacological aspects of genus Calendula. Pharmacogn. Rev., 7, 179–187. doi: 10.4103/0973-7847.120520.

Miguel, M., Barros, L., Pereira, C., Calhelha, R. C., Garcia, P. A., Castro, M. Á., Santos-Buelga, C., Ferreira, I. C. F. R. (2016). Chemical characterization and bioactive properties of two aromatic plants: Calendula officinalis (flowers) and Mentha cervina (leaves). Food Funct., 7, 2223–2232. doi: 10.1039/C6FO00398B.

López-Padilla, A., Ruiz-Rodriguez, A., Reglero, G., Fornari, T. (2017). Supercritical carbon dioxide extraction of Calendula officinalis: Kinetic modeling and scaling up study. The Journal of Supercritical Fluids., 130, 292–300. doi: 10.1016/j.supflu.2017.03.033.


GOST Style Citations


1.    Подольський В. В., Подольський Вл. В. Сучасні можливості відновлення та загоєння статевих органів нижнього відділу у жінок. Здоровье женщины. 2014. № 8 (94). С. 102–106.

 

2.    Гистология, эмбриология, цитология : учебник / под ред. Э. Г. Улумбекова, Ю. А. Челышева. 4-е, изд. перераб. и доп. Москва : ГЭОТАР-Медицина, 2016. 928 с.

 

3.    Щербина Н. А., Бобрицкая В. В., Липко О. П. Рациональная подготовка родовых путей как метод снижения травматизма мягких тканей в родах. Репродуктивна ендокринологія. 2017. № 6 (38). С. 91–95.

 

4.    Воробйова Л. І., Дунаєвська В. В., Гончарук І. В. Клінічний досвід застосування вагінальних супозиторіїв Ревітакса після елекрохірургічного лікування шийки матки. Здоровя жінки. 2014. №8 (94). С. 60–62.

 

5.    Dadak C., Bayerle-Eder M. Female sexual dysfunction. Obstetrics, Gynecology & Reproduction. 2015. Vol. 9, Iss. 4. P. 86–88. DOI: https://doi.org/10.17749/2070-4968.2015.9.4.086-088.

 

6.    Markowska J., Madry R., Markowska A. The Effect of the hyaluronic acid (Cicatridina) on healing and regeneration of the uterine cervix and vagina and vulva dystrophy therapy. European Journal of Gynaecological Oncology. 2011. Vol. 32 (1). P. 65–68. URL: https://www.eurolek.com.ua/the-effect-of-hyaluronic-acid-cicatridine-on-healing-and-regeneration-of-the-uterine-cervix-and-vagina-and-vulvar-dystrophy-therapy/.

 

7.    Место гиалуроновой кислоты в проблеме старения кожи / Л. Д. Калюжная и др. Естетична медицина. 2009. Т. 10, № 4. С. 44– 46. URL: http://www.health-medix.com/articles/anti_aging/2009-10-05/44-46.pdf.

 

8. Химическая модификация гиалуроновой кислоты и ее применение в медицине / Н. Н. Сигаева и др. Вестник Башкирского университета. 2012. Т. 17, № 3. С. 1220–1241. URL: http://bulletin-bsu.com/archive/2012/3/4/.

 

9.    Svanovský E. Fyziologie a farmakologie kyseliny hyaluronové. Česká a Slovenská farmacie. 2007. № 56 (6). Р. 264–268. URL: https://www.prolekarniky.cz/casopisy/ceska-slovenska-farmacie/2007-6/fyziologie-a-farmakologie-kyseliny-hyaluronove-3227/download?hl=cs.

 

10.  Price R. D., Berry M. G., Navsaria H. A. Hyaluronic acid : the scientific and clinical evidence. Journal of Plastic, Reconstructive & Aesthetic Surgery. 2007. Vol. 60, Iss. 10. P. 1110–1119. DOI: https://doi.org/10.1016/j.bjps.2007.03.005.

 

11.  Hyaluronic acid : a natural biopolymer with a broad range of biomedical and industrial applications / G. Kogan et al. Biotechnology Letters. 2007. Vol. 29, № 1. P. 17–25. DOI: https://doi.org/10.1007/s10529-006-9219-z.

 

12.  Stern R. Hyaluronan catabolism : a new metabolic pathway. European Journal of Cell Biology. 2004. Vol. 83, Iss. 7. P. 317–325. DOI: https://doi.org/10.1078/0171-9335-00392.

 

13.  Chemical Constituents, Antimicrobial Activity, and Food Preservative Characteristics of Aloe vera Gel / I. Kahramano et al. Agronomy. 2019. Vol. 9, Iss. 12. P. 1–18. DOI: https://doi.org/10.3390/agronomy9120831.

 

14.  Tyrosinase inhibitory components from Aloe vera and their antiviral activity / J. H. Kim et al. Journal of Enzyme Inhibition and Medicinal Chemistry. 2017. Vol. 32, Iss. 1. P. 78–83. DOI: https://doi.org/10.1080/14756366.2016.1235568.

 

15.  Misir J., Brishti F. H., Hoque M. M. Aloe vera gel as a novel edible coating for fresh fruits : а review. American Journal of Food Science and Technology. 2014. Vol. 2, Iss. 3. P. 93–97. DOI: https://doi.org/10.12691/ajfst-2-3-3.

 

16.  Bioactive chemical constituents from the resin of Aloe vera / N. U. Rehman et al. Zeitschrift für Naturforschung B. 2017. Vol. 72, Iss. 12. P. 955–958. DOI: https://doi.org/10.1515/znb-2017-0117.

 

17.  Natural phosphodiesterase-4 inhibitors from the leaf skin of Aloe barbadensis Miller / J. S. Zhong et al. Fitoterapia. 2015. Vol. 100. P. 68–74. DOI: https://doi.org/10.1016/j.fitote.2014.11.018.

 

18.  Hassanpour H. Effect of Aloe vera gel coating on antioxidant capacity, antioxidant enzyme activities and decay in raspberry fruit. LWT-Food Science Technology. 2015. Vol. 60, Iss. 1. 495–501. DOI: https://doi.org/10.1016/j.lwt.2014.07.049.

 

19.  Impact of solvent and supercritical fluid extracts of green tea on physicochemical and sensorial aspects of chicken soup / F. Ashfaq et al. AIMS Agriculture and Food. 2019. Vol. 4, Iss. 3. P. 794–806. DOI: https://doi.org/10.3934/agrfood.2019.3.794.

 

20.  Ziaedini A., Jafari A., Zakeri A. Extraction of antioxidants and caffeine from green tea (Camelia sinensis) leaves: Kinetics and modeling. Food Science and Technology International. 2010. Vol. 16, Iss. 6. P. 505–510. DOI: https://doi.org/10.1177/1082013210367567.

 

21.  The composition and structure of the tea leaves, processed in supercritical carbon dioxide / L. Y. Yarullin et al. Butlerov Communications. 2016. Vol. 48. Iss. 11. P. 88–100. ROI: jbc-02/16-48-11-88.

 

22.  Arora D., Rani A., Sharma A. A review on phytochemistry and ethnopharmacological aspects of genus Calendula. Pharmacogn. Reviews. 2013. Vol. 7, Iss. 14. P. 179–187. DOI: https://doi.org/10.4103/0973-7847.120520.

 

23.  Chemical characterization and bioactive properties of two aromatic plants: Calendula officinalis (flowers) and Mentha cervina (leaves) / M. Miguel et al. Food & Function. 2016. Vol. 7, Iss. 5. P. 2223–2232. DOI: https://doi.org/10.1039/C6FO00398B.

 

24.  Supercritical carbon dioxide extraction of Calendula officinalis: Kinetic modeling and scaling up study / A. López-Padilla et al. The Journal of Supercritical Fluids. 2017. Vol. 130. P. 292–300. DOI: https://doi.org/10.1016/j.supflu.2017.03.033.





Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: Ukr. biopharm. j.

ISSN 2519-8750 (Online), ISSN 2311-715X (Print)