The theoretical substantiation of the choice of active pharmaceutical ingredients to create a medicine for use in the preparation for childbirth
DOI:
https://doi.org/10.24959/ubphj.20.292Keywords:
childbirth, trauma during childbirth, hyaluronic acid, CO2-extracts, suppositoriesAbstract
Topicality. The rational preparation of the birth canal is an important task of modern obstetric practice since tears of the soft tissues of a woman in labor are a fairly common problem. Considering rather small number of drugs presented at the pharmaceutical market of Ukraine in the preparation for childbirth it is relevant and necessary to expand the range of drugs that will help reduction of soft tissue ruptures during childbirth.
Aim. To theoretically substantiate the choice of active pharmaceutical ingredients (API) for creating extemporaneous suppositories that help in the preparation of the birth canal and reduction of the rupture risk during childbirth.
Materials and methods. Diagnostic and analytical methods were used to review the literature. The main resource for finding information was electronic catalogs and databases of some educational institutions and research institutes.
Results and discussion. The expediency of introducing hyaluronic acid and some herbal extracts into an extemporaneous drug has been theoretically substantiated. When searching for scientific information and analyzing it, it has been found that the main function of hyaluronic acid is to regulate permeability of tissues, moisturize them, strengthen and increase protection against trauma. Regarding the use of CO2-extracts of aloe, green tea and calendula the necessity of their inclusion in the composition of a new extemporaneous drug has been determined due to the presence of a moisturizing, antiseptic, anti-inflammatory effect.
Conclusions. The expediency of using hyaluronic acid and CO2-extracts of aloe, green tea and calendula as active pharmaceutical ingredients when developing extemporaneous suppositories designed to reduce birth trauma to soft tissues has been proven.
References
Podolskyi, V. V., Podolskyi, Vl. V. (2014). Zdorove zhenshchyny, 8 (94), 102-106.
Ulumbekova, E. H., Chelysheva, Yu. A. (Eds.). (2016). Histolohiia, embriolohiia, tsytolohiia. Moscow: GEOTAR-Medicina, 928.
Shcherbina, N. A., Bobritskaia, V. V., Lipko, O. P. (2017). Reproduktyvna endokrinolohіia, 6 (38), 91-95.
Vorobiova, L. I., Dunaievska, V. V., Honcharuk, I. V. (2014). Zdorovia zhinky, 8 (94), 60–62.
Dadak, C., Bayerle-Eder, M. (2015). Female sexual dysfunction. Obstetrics, Gynecology & Reproduction, 9 (4), 86–88. doi: https://doi.org/10.17749/2070-4968.2015.9.4.086-088.
Markowska, J., Madry, R., Markowska, A. (2011). The Effect of the hyaluronic acid (Cicatridina) on healing and regeneration of the uterine cervix and vagina and vulva dystrophy therapy. Eur J Gynaec Oncol., 32 (1), 65–68. Available at: https://www.eurolek.com.ua/the-effect-of-hyaluronic-acid-cicatridine-on-healing-and-regeneration-of-the-uterine-cervix-and-vagina-and-vulvar-dystrophy-therapy/.
Kaliuzhnaia, L. D., Sharmazan, S. I., Moiseeva, E. V., Bondarenko, I. N. (2009). Estetychna medytsyna, 10 (4), 44–46. Available at: http://www.health-medix.com/articles/anti_aging/2009-10-05/44-46.pdf.
Sihaeva, N. N., Kolesov, S. V., Nazarov, P. V., Vil’danova, R. R. (2012). Vestnik Bashkirskogo universiteta, 17 (3), 1220-1241. Available at: http://bulletin-bsu.com/archive/2012/3/4/
Svanovský, E. (2007). Fyziologie a farmakologie kyseliny hyaluronové. Česká a Slovenská farmacie, 56 (6), 264-268. Available at: https://www.prolekare.cz/casopisy/ceska-slovenska-farmacie/2007-6/fyziologie-a-farmakologie-kyseliny-hyaluronove-3227.
Price, R. D., Berry, M. G., Navsaria, H. A. (2007). Hyaluronic acid: the scientific and clinical evidence. Journal of Plastic, Reconstructive & Aesthetic Surgery, 60 (10), 1110-1119. doi: 10.1016/j.bjps.2007.03.005.
Kogan, G., Šoltés, S., Stern, R., Gemeiner, P. (2007). Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnology Letters, 29 (1), 17-25. doi: 10.1007/s10529-006-9219-z.
Stern, R. (2004). Hyaluronan catabolism: a new metabolic pathway. Eur J Cell Biol, 83 (7), 317–325. doi: 10.1078/0171-9335-00392.
Kahramano, I., Chen, Ch., Chen, J., Wan, Ch. (2019). Chemical Constituents, Antimicrobial Activity, and Food Preservative Characteristics of Aloe vera Gel. Agronomy, 9 (831), 1-18. doi: https://doi.org/10.3390/agronomy9120831.
Kim, J. H., Yoon, J. Y., Yang, S. Y. et al. (2017). Tyrosinase inhibitory components from Aloe vera and their antiviral activity. J Enzyme Inhib Med Chem, 32, 78–83. doi: 10.1080/14756366.2016.1235568.
Misir, J., Brishti, F. H., Hoque, M. M. (2014). Aloe vera gel as a novel edible coating for fresh fruits. A Review. Am. J. Food Sci. Technol, 2, 93–97. doi: 10.12691/ajfst-2-3-3.
Rehman, N. U., Hussain, H., Khiat, M., Khan, H. Y., Abbas, G., Green, I. R., Al-Harrasi, A. (2017). Bioactive chemical constituents from the resin of Aloe vera. Z. Nat. Sect. B-A J. Chem. Sci, 72, 955–958. doi: 10.1515/znb-2017-0117.
Zhong, J. S., Huang, Y. Y., Zhang, T. H. et al. (2015). Natural phosphodiesterase-4 inhibitors from the leaf skin of Aloe barbadensis Miller. Fitoterapia, 100, 68–74. doi: 10.1016/j.fitote.2014.11.018.
Hassanpour, H. (2015). Effect of Aloe vera gel coating on antioxidant capacity, antioxidant enzyme activities and decay in raspberry fruit. LWT-Food Sci. Technol, 60, 495–501. doi: 10.1016/j.lwt.2014.07.049.
Ashfaq, F., Butt, M. S., Bilal, A., Ansar, H., Suleria, R. (2019). Impact of solvent and supercritical fluid extracts of green tea on physicochemical and sensorial aspects of chicken soup. Agriculture and Food, 4 (3), 794–806. doi: 10.3934/agrfood.2019.3.794.
Ziaedini, A., Jafari, A., Zakeri, A. (2010). Extraction of antioxidants and caffeine from green tea (Camelia sinensis) leaves: Kinetics and modeling. Food Science and Technology International, 16, 505-510. doi: https://doi.org/10.1177/1082013210367567/.
Yarullin, L. Y., Gumerov, F. M., Hung, T. N., Gilmutdinov, I. I., Zaripov, Z. I., Gabitov, F. R., Remizov, A. B. (2016). The composition and structure of the tea leaves, processed in supercritical carbon dioxide. Butlerov Communications, 48 (11), 88-100. roi: jbc-02/16-48-11-88.
Arora, D., Rani, A., Sharma, A. (2013). A review on phytochemistry and ethnopharmacological aspects of genus Calendula. Pharmacogn. Rev., 7, 179–187. doi: 10.4103/0973-7847.120520.
Miguel, M., Barros, L., Pereira, C., Calhelha, R. C., Garcia, P. A., Castro, M. Á., Santos-Buelga, C., Ferreira, I. C. F. R. (2016). Chemical characterization and bioactive properties of two aromatic plants: Calendula officinalis (flowers) and Mentha cervina (leaves). Food Funct., 7, 2223–2232. doi: 10.1039/C6FO00398B.
López-Padilla, A., Ruiz-Rodriguez, A., Reglero, G., Fornari, T. (2017). Supercritical carbon dioxide extraction of Calendula officinalis: Kinetic modeling and scaling up study. The Journal of Supercritical Fluids., 130, 292–300. doi: 10.1016/j.supflu.2017.03.033.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 National University of Pharmacy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).