DOI: https://doi.org/10.24959/ubphj.19.225

Study of phenolic compounds in the Feverfew Herb by TLC and HPLC methods

K. R. Hordiei, T. M. Gontova, A. G. Serbin, A. G. Kotov, E. E. Kotova

Abstract


Topicality. The search of new plant sources of biologically active substances is an actual issue for the pharmaceutical science. The feverfew (Tanacetum parthenium (L.) Schultz Bip) is one of the prospective species of the Aster family. Its chemical composition mainly consists of phenolic compounds and sesquiterpene lactones. According to the latest data of the foreign sources feverfew herb phenolic compounds stipulate a prominent anti-inflammatory effect. This species is successfully used to treat the chronic inflammatory diseases of the connective tissue. Therefore, the determination of the qualitative composition and quantitative content in the samples of domestic feverfew raw material is actual.
Aim. To determinate the qualitative composition and quantitative content of phenolic compounds in the feverfew herb.
Materials and methods. The object was the feverfew herb collected in July 2017 on the territory of the Botanical garden of the National University of Pharmacy. The qualitative composition and quantitative content were determinated by the thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) methods.
Results and discussion. Chlorogenic and cichoric acids zones, luteolin and luteolin7-glucoside in comparison with
their zones of reference standards were identified by TLC method. 12 compounds were identified and determinated by HPLC method. Hydroxycinnamic acids, namely 3,5-dicaffeoylquinic acid (1.575 %), 4,5-dicaffeoylquinic acid (1.308 %) and chlorogenic acid (0.784 %) were accumulated in the feverfew herb in the greatest amount. Among flavonoids, apigenin-7-glucoside (0.071 %) and kaempferol (0.041 %) prevailed.
Conclusions. For the first time the qualitative composition and quantitative content in the feverfew herb were determinated by TLC and HPLC methods. The high content of the phenolic compounds in the plant raw material attests to the opportunity of feverfew herb standardization by such classes as hydroxycinnamic acids and flavonoids. The data obtained attest to the perspective creating a medicine with the high anti inflammatory activity based on the feverfew herb.


Keywords


feverfew; herb; Aster family; thin layer chromatography; high performance liquid chromatography; flavonoids; hydroxycinnamic acids

References


Williams, C. A., Harborne, J. B., Geiger, H., Hoult, J. R. (1999). The flavonoids of Tanacetum parthenium and T. vulgare and their anti–inflammatory properties. Phytochemistry, 51, 417–423. https://doi.org/10.1016/S0031-9422(99)00021-7

Long, C., Sauleau, P., David, B., Lavaud, C., Cassabois, V., Ausseil, F., & Massiot, G. (2003). Bioactive flavonoids of Tanacetum parthenium revisited. Phytochemistry, 64 (2), 567–569. https://doi.org/10.1016/S0031-9422(03)00208-5

Pareek, A., Suthar, M., Rathore, G., & Bansal, V. (2011). Feverfew (Tanacetum parthenium L.) : A systematic review. Pharmacognosy Reviews, 5 (9),

https://doi.org/10.4103/0973-7847.79105

Rezaei, F., Jamei, R., & Heidari, R. (2017). Evaluation of the Phytochemical and Antioxidant Potential of Aerial Parts of Iranian Tanacetum parthenium. Pharmaceutical Sciences, 23 (2), 136–142. https://doi.org/10.15171/ps.2017.20

Williams, C. A., Hoult, J. R. S., Harborne, J. B., Greenham, J., & Eagles, J. (1995). A biologically active lipophilic flavonol from Tanacetum parthenium. Phytochemistry, 38 (1), 267–270. https://doi.org/10.1016/0031-9422(94)00609-w

Shynkovenko, I. L., Ilyina, T. V., Goryacha, O. V., Kovalyova, A. M., Komissarenko, A. М., Shemchuk, N. S., & Golembiovska, O. I. (2018). Phenolic compounds of the liquid extract from cleavers herb (galium aparine l.). Vìsnik Farmacìï, 3 (95), 19–24. https://doi.org/10.24959/nphj.18.2213

Derzhavna Farmakopeia Ukrainy : v 3 t. (2015). Derzhavne pidpryiemstvo “Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv”. Kharkiv : Derzhavne pidpryiemstvo “Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv”, 3, 732.

Santos, F. M., Malafaia, C. A., Simas, D. L. R., Paulino, A. B., Muzitano, M. F., Simas, N. K., … Leal, I. C. R. (2019). Phenolic compounds from Tocoyena bullata mart (Rubiaceae) with inhibitory activity in mast cells degranulation. Natural Product Research, 1–4. https://doi.org/10.1080/14786419.2018.1560281

Naveed, M., Hejazi, V., Abbas, M., Kamboh, A. A., Khan, G. J., Shumzaid, M., XiaoHui, Z. (2018). Chlorogenic acid (CGA): A pharmacological review

and call for further research. Biomedicine & Pharmacotherapy, 97, 67–74. https://doi.org/10.1016/j.biopha.2017.10.064

Nabavi, S. F., Braidy, N., Gortzi, O., Sobarzo– Sanchez, E., Daglia, M., Skalicka–Woźniak, K., & Nabavi, S. M. (2015). Luteolin as an anti-inflammatory and neuroprotective agent : A brief review. Brain Research Bulletin, 119, 1–11. https://doi.org/10.1016/j.brainresbull.2015.09.002

Wu, G., Li, J., Yue, J., Zhang, S., & Yunusi, K. (2017). Liposome encapsulated luteolin showed enhanced antitumor efficacy to colorectal carcinoma. Molecular Medicine Reports, 17 (2), 2456–2464 https://doi.org/10.3892/mmr.2017.8185

Palombo, R., Savini, I., Avigliano, L., Madonna, S., Cavani, A., Albanesi, C., … Terrinoni, A. (2016). Luteolin–7–glucoside inhibits IL–22/STAT3 pathway, reducing proliferation, acanthosis, and inflammation in keratinocytes and in mouse psoriatic model. Cell Death & Disease, 7 (8), 2344–2344. https://doi.org/10.1038/cddis.2016.201

Song, Y. S., & Park, C. M. (2014). Luteolin and luteolin–7–O-glucoside strengthen antioxidative potential through the modulation of Nrf2/MAPK mediated HO–1 signaling cascade in RAW 264.7 cells. Food and Chemical Toxicology, 65, 70–75. https://doi.org/10.1016/j.fct.2013.12.017


GOST Style Citations


1. The flavonoids of Tanacetum parthenium and T. vulgare and their anti–inflammatory properties / C. A. Williams, J. B. Harborne, H. Geiger, J. R. Hoult // Phytochemistry. – 1999. – № 51. – P. 417–423. https://doi.org/10.1016/S0031-9422(99)00021-7


2. Long, C. Bioactive flavonoids of Tanacetum parthenium revisited / C. Long, P. Sauleau, B. David. // Phytochemistry. – 2003. – № 64. – P. 567–569.
https://doi.org/10.1016/S0031-9422(03)00208-5


3. Feverfew (Tanacetum parthenium L.) : A systematic review / A. Pareek, M. Suthar, G. S. Rathore, V. Bansal // Pharmacognosy Rev. – 2011. – № 5 (9). – P. 103–110. https://doi.org/10.4103/0973-7847.79105


4. Farshid, R. Evaluation of the Phytochemical and Antioxidant Potential of Aerial Parts of Iranian Tanacetum parthenium / R. Farshid, J. Rashid, H. Reza // Pharm. Sci. – 2017. – Vol. 23 (2). – P. 136–142. https://doi.org/10.15171/ps.2017.20


5. A biologically active lipophilic flavonol from Tanacetum parthenium / C. A. Williams, J. R. Hoult, J. B. Harborne et al. // Phytochemistry. – 1995. – Vol. 38. – Р. 267–270. https://doi.org/10.1016/0031-9422(94)00609-w


6. Phenolic compounds of the liquid extract from cleavers herb (Galium aparine L.) / I. L. Shynkovenko, Т. V. Ilyina, А. М. Kovalyova et al. // Вісник фармації. – 2018. – № 3. – С. 19–24. https://doi.org/10.24959/nphj.18.2213


7. Державна фармакопея України : в 3-х т. / Державне підприємство «Український науковий фармакопейний центр якості лікарських засобів». – 2–е вид. – Х. : Державне підприємство «Український науковий фармакопейний центр якості лікарських засобів», 2014. – Т. 3. – 732 с.


8. Phenolic compounds from Tocoyena bullata mart (Rubiaceae) with inhibitory activity in mast cells degranulation / F. M. Santos, C. A. Malafaia, D. L. Simas et al. // Nat. Prod. Res. – 2019. – Vol. 19. – Р. 1–4. https://doi.org/10.1080/14786419.2018.1560281


9. Chlorogenic acid (CGA) : A pharmacological review and call for further research / M. Naveed, V. Hejazi, M. Abbas et al. // Biomed. Pharmacother. – 2018. – Vol. 97. – Р. 67–74. https://doi.org/10.1016/j.biopha.2017.10.064


10. Luteolin as an anti–inflammatory and neuroprotective agent : A brief review / S. F. Nabavi, N. Braidy, O. Gortzi et al. // Brain. Res. Bull. – 2015. – Vol. 119. – Р. 1–11. https://doi.org/10.1016/j.brainresbull.2015.09.002


11. Liposome encapsulated luteolin showed enhanced antitumor efficacy to colorectal carcinoma / G. Wu, J. Li, J. Yue et al. // Mol. Med. Rep. – 2018. – Vol. 17 (2). – Р. 2456–2464. https://doi.org/10.3892/mmr.2017.8185


12. Luteolin–7–glucoside inhibits IL–22/STAT3 pathway, reducing proliferation, acanthosis, and inflammation in keratinocytes and in mouse psoriatic
model / R. Palombo, I. Savini, L. Avigliano et al. // Cell. Death. Dis. – 2016. – Vol. 7 (8). – Р. 234–241. https://doi.org/10.1038/cddis.2016.201


13. Song, Y. S. Luteolin and luteolin–7–O-glucoside strengthen antioxidative potential through the modulation of Nrf2/MAPK mediated HO–1 signaling cascade in RAW 264.7 cells / Y. S. Song, C. M. Park // Food Chem. Toxicol. – 2014. – Vol. 65. – Р. 70–75. https://doi.org/10.1016/j.fct.2013.12.017





Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: Ukr. bìofarm. ž.

ISSN 2519-8750 (Online), ISSN 2311-715X (Print)