DOI: https://doi.org/10.24959/ubphj.19.231

Influence of melatonin introduction on the state of glutathione system and the level of hydrogen sulfide in blood of rats with alloxan induced diabetes mellitus

N. M. Luhinich, I. V. Gerush

Abstract


Topicality. Hyperglycemia in diabetes mellitus (DM) leads to the growth of complications associated with increased
oxidative stress. The effect of melatonin on antioxidant status in the case of diabetes mellitus is of great interest in recent years.
Aim. To study the effect of melatonin administration on glutathione system parameters and the level of hydrogen
sulfide in blood of rats with aloxane-induced diabetes mellitus.
Materials and methods. Experiments were conducted on white, non-breeding, sexually mature male rats with a body weight of 0.15-0.18 kg white male rats. Diabetes mellitus was caused by intravaginal administration of a 5 % solution of alloxane monohydrate in a dose of 150 mg/kg. Melatonin was administered intragastrally at a dose of 10 mg/kg body weight for 7 and 14 days. In blood erythrocyte hemolysis, the content of reduced glutathione (GSH), glutathione-Stransferase (GST), glutathione peroxidase (GPX), glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G-6-PD) and glucose-6-phosphate dehydrogenase (G-6-PD) activity were determined and plasma activity GST, the content of SH-groups and hydrogen sulfide (H2S).
Results and discussion. In blood of rats at alloxane induced diabetes, an increase in the activity of enzymes GST, GPX, GR and G-6-PD in red blood cells was observed when the concentration of GSH decreased. Along with this, there was a decrease in the levels of SH-groups and H2S and GST activity in the blood plasma of the alloxan-diabetic group. The results showed that both on day 7 and day 14 of the experiment, melatonin normalizes the glutathione system of blood in rats
with alloxane-induced diabetes. Also, the administration of melatonin for 7 days to the alloxane-diabetic group of rats normalized the levels of H2S and SH-groups of plasma. On the 14th day of the experiment there was an increase in the level of these two indicators, but they significantly differed from those of the control group.
Conclusions. Introduction of melatonin to the alloxanediabetic group helps to normalize the studied parameters, possibly due to its antioxidant properties and the ability to protect against oxidative stress, which has a positive effect on the glutathione system and the level of SH-groups and H2S.


Keywords


diabetes mellitus; melatonin; glutathione; hydrogen sulfide

References


Yuan, T., Yang, T., Chen, H., Fu, D., Hu, Y., Wang, J., … Xie, X. (2019). New insights into oxidative stress and inflammation during diabetes mellitus–accelerated atherosclerosis. Redox Biology, 20, 247–260. https://doi.org/10.1016/j.redox.2018.09.025

Rojas, J., Bermudez, V., Palmar, J., Martínez, M. S., Olivar, L. C., Nava, M., … Velasco, M. (2018). Pancreatic Beta Cell Death: Novel Potential Mechanisms in Diabetes Therapy. Journal of Diabetes Research, 2018, 1–19. https://doi.org/10.1155/2018/9601801

Beiraghi–Toosi, A., Askarian, R., Haghighi, F. S., Safarian, M., Kalantari, F., & Hashemy, S. I. (2018). Burn-induced Oxidative Stress and Serum Glutathione Depletion; a Cross Sectional Study. Emergency, 6 (1), e54.

Lutchmansingh, F. K., Hsu, J. W., Bennett, F. I., Badaloo, A. V., McFarlane–Anderson, N., & Gordon–Strachan, G. M. (2018). Glutathione metabolism in type 2 diabetes and its relationship with microvascular complications and glycemia. PLOS ONE 13 (6). https://doi.org/10.1371/journal.pone.0198626

Kabil, O., Motl, N., & Banerjee, R. (2014). H2S and its role in redox signaling. Biochim Biophys Acta, 1844 (8), 1355–1366. https://doi.org/10.1016/j.

bbapap.2014.01.002

Herush, I. V., & Ferenchuk, Ye. O. (2019). Hydrogen sulfide and mitochondria. Biopolymers and Cell, 35 (1), 3–15. https://doi.org/10.7124/bc.000998

Espino, J., Pariente, J. A., & Rodríguez, A. B. (2011). Role of melatonin on diabetes–related metabolic disorders. World J. Diabetes, 2 (6), 82–91. https://doi.org/10.4239/wjd.v2.i6.82

Lo, C. C., Lin, S. H., Chang, J. S., & Chien, Y. W. (2017). Effects of Melatonin on Glucose Homeostasis, Antioxidant Ability, and Adipokine Secretion in ICR Mice with NA/STZ–Induced Hyperglycemia. Nutrients, 9, 1187. https://doi.org/10.3390/nu9111187

Akinola, O., Gabriel, M., Suleiman, A. A., & Olorunsogbon, F. (2012). Treatment of alloxan-induced diabetic rats with metformin or glitazones is associated with amelioration of hyperglycaemia and neuroprotection. The Open Diabetes Journal, 5, 8–12. https://doi.org/10.2174/1876524601205010008

Beutler, E. (1990). Red cell metabolism a manual of biochemical methods. Orlando: Grune & Stration, 134.

Habig, W. H., Pabs, M. J., & Fleischner, G. (1974). The identity of glutathione S-transferase B with ligandin, a major binding protein of liver. Proceedings of the National Academy of Sciences, 71 (10), 3879–3882. https://doi.org/10.1073/pnas.71.10.3879

Vlasova, S. N., Shabunina, E. I., & Perslegina, I. A. (1990). Lab. Delo, 8, 19–22.

Herush, I. V., & Meshchyshen, I. F. (1998). Visnyk problem biol. ta medytsyny, 7, 10–15.

Beutler, E. (1969). Effect of flavin compounds on glutathione reductase activity: in vivo and in vitro studies. Journal of Clinical Investigation, 48 (10), 1957–1966. https://doi.org/10.1172/jci106162

Kornberg, A., & Horecker, B. L. (1955). Glucose–6–Phosphate Dehydrogenase. New York : Academic Press.

Meshchyshen, I. F., & Hryhorieva, N. P. (2002). Bukovynskyi medychnyi visnyk, 6 (2), 190–192.

Dombkowski, R. A., Russell, M. J., & Olson, K. R. (2004). Hydrogen sulfide as an endogenous regulator of vascular smooth muscle tone in trout. Am. J. Physiol. Regul. Integr. Comp. Physiol., 286, 678–685. https://doi.org/10.1152/ajpregu.00419.2003

Diederich, L., Suvorava, T., Sansone, R., Keller, T. C. S., Barbarino, F., Sutton, T. R., … Cortese–Krott, M. M. (2018). On the Effects of Reactive Oxygen Species and Nitric Oxide on Red Blood Cell Deformability. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.00332

Jain, S. K., Huning, L., & Micinski, D. (2014). Hydrogen Sulfide Upregulates Glutamate–Cysteine Ligase Catalytic Subunit, Glutamate–Cysteine Ligase

Modifier Subunit, and Glutathione and Inhibits Interleukin–1β Secretion in Monocytes Exposed to High Glucose Levels. Metabolic Syndrome and Related Disorders, 12 (5), 299–302. https://doi.org/10.1089/met.2014.0022

Xie, Z.–Z., Liu, Y., & Bian, J.–S. (2016). Hydrogen Sulfide and Cellular Redox Homeostasis. Oxidative Medicine and Cellular Longevity, 2016, 1–12. https://doi.org/10.1155/2016/6043038

Murat Görgün, F., Kökoğlu, E., Gümü ştaş, M. K., Altuğ, T., Cansever, Ş., & Kavunoğlu, G. (2004). Effects of Melatonin on Plasma S-Nitrosoglutathione and Glutathione in Streptozotocin-Treated Rats. Journal of Toxicology and Environmental Health, Part A, 67 (13), 979–986. https://doi.org/10.1080/15287390490447278

Wang, Y., Li, J., Matye, D., Zhang, Y., Dennis, K., Ding, W.–X., & Li, T. (2018). Bile acids regulate cysteine catabolism and glutathione regeneration to modulate hepatic sensitivity to oxidative injury. JCI Insight, 3(8). https://doi.org/10.1172/jci.insight.99676


GOST Style Citations


1. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis / T. Yuan, T. Yang, H. Chen et al. // Redox Biol. – 2019. – № 20. – С. 247–260. https://doi.org/10.1016/j.redox.2018.09.025


2. Pancreatic Beta Cell Death : Novel Potential Mechanisms in Diabetes Therapy / J. Rojas, V. Bermudez, J. Palmar et al. // J. of Diabetes Res. – 2018. – Vol. 2018. – P. 1–19. https://doi.org/10.1155/2018/9601801


3. Burn–induced Oxidative Stress and Serum Glutathione Depletion; a Cross Sectional Study / A. Beiraghi–Toosi, R. Askarian, F. Sadrabadi Haghighi et al. // Emergency. – 2018. – Vol. 6 (1).


4. Glutathione metabolism in type 2 diabetes and its relationship with microvascular complications and glycemia / F. K. Lutchmansingh, J. W. Hsu, F. I. Bennett et al. // PLOS ONE. – 2018. – Vol. 13 (6). https://doi.org/10.1371/journal.pone.0198626


5. Kabil, O. H2S and its role in redox signaling / O. Kabil, N. Motl, R. Banerjee // Biochim. Biophys. Acta. – 2014. – № 1844. – С. 1355–1366. https:// doi.org/10.1016/j.bbapap.2014.01.002


6. Gerush, I. V. Hydrogen sulfide and mitochondria / I. V. Gerush, Y. O. Ferenchuk // Biopolymers and Cell. – 2019. – № 35. – С. 3–15. https:// doi.org/10.7124/bc.000998


7. Espino, J. Role of melatonin on diabetes-related metabolic disorders / J. Espino, J. Pariente, A. Rodríguez // World J. Diabetes. – 2011. – № 2. – С. 82–91. https://doi.org/10.4239/wjd.v2.i6.82


8. Effects of Melatonin on Glucose Homeostasis, Antioxidant Ability and Adipokine Secretion in ICR Mice with NA/STZ–Induced Hyperglycemia / C. C. Lo, S. H. Lin, J. S. Chang, Y. W. Chien // Nutrients. – 2017. – Vol. 9 (11). – P. 1187. https://doi.org/10.3390/nu9111187


9. Treatment of alloxan–induced diabetic rats with metformin or glitazones is associated with amelioration of hyperglycaemia and neuroprotection / O. Akinola, M. Gabriel, A. Suleiman, F. Olorunsogbon // The Open Diabetes J. – 2012. – № 5. – С. 8–12. https://doi.org/10.2174/1876524601205010008


10. Beutler, E. Red cell metabolism a manual of biochemical methods / E. Beutler. – Orlando : Grune & Stration, 1990. – 134 с.


11. Habig, W. H. The identity of glutathione S–transferase B with ligandin, a major binding protein of liver / W. H. Habig, M. J. Pabs, G. Fleischner // Proceedings of the National Academy of Sci. – 1974. – № 71 (10). – С. 3879–3882. https://doi.org/10.1073/pnas.71.10.3879


12. Власова, С. Н. Активность глутатионзависимых ферментов эритроцитов при хронических заболеваниях печени у детей / С. Н. Власова, Е. И. Шабунина, И. А. Перслегина. // Лаб. дело. – 1990. – № 8. – С. 19–22.


13. Геруш, І. В. Стан глутатіонової системи крові за умов експериментального виразкового ураження гастродуоденальної зони та дії настойки ехінацеї пурпурової / І. В. Геруш, І. Ф. Мещишен. // Вісник проблем біол. та медицини. – 1998. – № 7. – С. 10–15.


14. Beutler, E. Effect of Flavin Compounds on Glutathione Reductase Activity : In vivo and in vitro Studies / E. Beutler // The J. of Community Informatics. – 1969. – № 48. – С. 1957–1966. https://doi.org/10.1172/jci106162


15. Kornberg, A. Glucose–6–Phosphate Dehydrogenase / A. Kornberg, B. L. Horecker. – New York : Academic Press, 1955. – 323 с. – (Methods in Enzymology).


16. Мещишен, І. Ф. Метод кількісного визначення HS–груп у крові / І. Ф. Мещишен, Н. П. Григор’єва // Буковинський мед. вісник. – 2002. – № 6. – С. 190–192.


17. Dombkowski, R. A. Hydrogen sulfide as an endogenous regulator of vascular smooth muscle tone in trout / R. A. Dombkowski, M. J. Russell, K. R. Olson // Am. J. Physiol. Regul. Integr. Comp. Physiol. – 2004. – № 286. – С. 678–685. https://doi.org/10.1152/ajpregu.00419.2003


18. On the Effects of Reactive Oxygen Species and Nitric Oxide on Red Blood Cell Deformability / L. Diederich, T. Suvorava, R. Sansone et al. // Front. Physiol. – 2018. – № 9. – С. 332. https://doi.org/10.3389/fphys.2018.00332


19. Jain, S. Hydrogen sulfide upregulates glutamate– cysteine ligase catalytic subunit, glutamatecysteine ligase modifier subunit, and glutathione and inhibits interleukin–1beta secretion in monocytes exposed to high glucose levels / S. Jain, L. Huning, D. Micinski // Metabolic Syndrome and Related Disorders. – 2014. – № 12. – С. 299–302. https://doi.org/10.1089/met.2014.0022


20. Xie, Z. Hydrogen sulfide and cellular redox homeostasis / Z. Xie, Y. Liu, J. Bian // Oxidative Medicine and Cellular Longevity. – 2016. – Vol. 2016. – P. 1–12. https://doi.org/10.1155/2016/6043038


21. Gorgun, F. M. Effects of melatonin on plasma S nitrosoglutathione and glutathione in streptozotocin– treated rats / F. M. Gorgun, E. Kokoglu, M. K. Gumustas // J. Toxicol. Environ. Health A. – 2004. – № 67. – P. 979–986. https://doi.org/10.1080/15287390490447278


22. Bile acids regulate cysteine catabolism and glutathione regeneration to modulate hepatic sensitivity to oxidative injury / Y. Wang, J. Li, D. Matye et al. // JCI Insight. – 2018. – Vol. 3 (8). https://doi.org/10.1172/jci.insight.99676





Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: Ukr. bìofarm. ž.

ISSN 2519-8750 (Online), ISSN 2311-715X (Print)