DOI: https://doi.org/10.24959/ubphj.20.258

The role of glia in the mechanisms of neural protection of the fixed combination of ipidacrine hydrochloride / phenibut on the background of drug-induced liver injury

Yu. Kharchenko, N. Bondarenko, A. Serdiuk, G. Ushakova, V. Zhyliuk

Abstract


Topicality. The main disadvantage of the first-line anti-TB drugs isoniazid and rifampicin is their ability to cause drug-induced liver injury. At the same time, in addition to hepatotoxic, in 12-24 % of cases are neurological disorders. The consequence of these processes is a disturbance of synaptic plasticity, learning processes and memory. In addition, significant factor in the development of neurological disorders may be an imbalance of intestinal microflora. One of the possible options at eliminating or attenuating the manifestations of cognitive deficiency in various pathological conditions is the appointment of drugs with neuroprotective properties. However, even today their effectiveness studied not enough for central nervous system dysfunctions arising from prolonged anti-TB therapy. Therefore, we can assume that neurological disorders can be due to a complex of interrelated factors.
Aim. To determine the morphometric and ultrastructural features of neurons and glial cells, as well as the levels of glial fibrillary acid protein (GFAB) in the hippocampus of rats under long-term administration of isoniazid and rifampicin during experimental therapy with a fixed combination of ipidacrine hydrochloride/phenibut.
Materials and methods. Studies were conducted on three groups of white Wistar male rats with drug-induced hepatitis, reproduced by intragastric administration of isoniazid and rifampicin for 28 days. In the last 14 days of the intragastric experiment, rats of the research group were administered ipidacrine hydrochloride/phenibut (1/60 mg/kg). The content of cytosolic GFAP in the hippocampus was determined by competitive enzyme-linked immunosorbent assay. Semi-thin sections of CA1 sections of the rat hippocampus were analyzed, Image J. analysis program used. The ultrastructural characteristics were studied, PEM-100-01 transmission electron microscope used (Selmi, Ukraine).

Results and discussion. Under the experimental pharmacotherapy the specific number of degeneratively altered neurons was significantly lower than in the controlled animals. At the same time, astrocytes were characterized by significantly less edema of the cytoplasm and adaptive-compensatory changes in mitochondria, and the content of cytoplasmic GFAP was 44.2 % (P = 0.0065) lower than the group of animals with hepatitis.

Conclusions. Course administration of ipidacrine and phenibut reduces the severity of neurodegeneration appearance, improves the state of astroglia in the hippocampus, and it also reduces the cytoplasmic levels of glial acidic fibrillary protein in animals with drug-induced liver injury.


Keywords


ipidacrine hydrochloride; phenibut; drug-induced liver injury; hippocampus

References


Shih, T.-Y., Young, T.-H., Lee, H.-S., Hsieh, C.-B., & Hu, O. Y.-P. (2013). Protective Effects of Kaempferol on Isoniazid- and Rifampicin-Induced Hepatotoxicity. The AAPS Journal, 15 (3), 753–762. https://doi.org/10.1208/s12248-013-9490-6

Wang, C., Fan, R.-Q., Zhang, Y.-X., Nie, H., & Li, K. (2016). Naringenin protects against isoniazid- and rifampicin-induced apoptosis in hepatic injury. World Journal of Gastroenterology, 22 (44), 9775. https://doi.org/10.3748/wjg.v22.i44.9775

Wang, P., Pradhan, K., Zhong, X., & Ma, X. (2016). Isoniazid metabolism and hepatotoxicity. Acta Pharmaceutica Sinica B, 6 (5), 384–392. https://doi.org/10.1016/j.apsb.2016.07.014

Hakim, Z., Waheed, A., Bakhtiar, S., Hasan, N., Hakim, B. (2018). Potentiating effect of rifampicin on methimazole induced hepatotoxicity in mice. Pak J Pharm Sci., 31 (6), 2373–2377.

Ridola, L., Nardelli, S., Gioia, S., & Riggio, O. (2018). Quality of life in patients with minimal hepatic encephalopathy. World Journal of Gastroenterology, 24 (48), 5446–5453. https://doi.org/10.3748/wjg.v24.i48.5446

Tyulkova, T. E. (2018). Effect of pyridoxine and isonicotinic acid hydrazide on the nervous system during tuberculosis treatment. Tuberculosis and lung diseases, 96 (11), 69–73. https://doi.org/10.21292/2075-1230-2018-96-11-69-73

Verdi, S., Jackson, M. A., Beaumont, M., Bowyer, R. C. E., Bell, J. T., Spector, T. D., & Steves, C. J. (2018). An Investigation Into Physical Frailty as a Link Between the Gut Microbiome and Cognitive Health. Frontiers in Aging Neuroscience, 10. https://doi.org/10.3389/fnagi.2018.00398

Namasivayam, S., Maiga, M., Yuan, W., Thovarai, V., Costa, D. L., Mittereder, L. R., … Sher, A. (2017). Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy. Microbiome, 5 (1). https://doi.org/10.1186/s40168-017-0286-2

Wipperman, M. F., Fitzgerald, D. W., Juste, M. A. J., Taur, Y., Namasivayam, S., Sher, A., … Glickman, M. S. (2017). Antibiotic treatment for Tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Scientific Reports, 7 (1). https://doi.org/10.1038/s41598-017-10346-6

Bielenichev, I. F. (2015). Zaporozhskyi medytsynskyi zhurnal, 2(89), 37–41.

Smirnov, A. V., Kraiushkin, A. I., Gorelik, E. V., Gurov, D. Iu., Grigoreva, N. V., Zamaraev, V. S., Danilenko, V. I. (2012). Sovremennye problemy nauki i obrazovaniia, 1.

Assonov, D. O., & Bozhuk, B. S. (2017). Role of the hippocampus in memory functioning: modern view. Zaporozhye Medical Journal, 6. https://doi.org/10.14739/2310-1210.2017.6.115318

Gomazkov, O. A. (2018). Uspekhi Sovremennoi Biologii, (4), 373–382. https://doi.org/10.7868/s004213241804004x

Gomazkov, O. A. (2019). Neirokhimiia, 36 (4), 267–274. https://doi.org/10.1134/s1027813319030075

Kovalchuk, Y. P., & Ushakovа, H. O. (2016). The changes of glial fibrillary acid protein level in the different brain areas of gerbils under development, aging and alpha-keto glutarate effect. Medical and Clinical Chemistry, (1). https://doi.org/10.11603/mcch.2410-681x.2016.v0.i1.6180

Chorna, V. I., Lianna, O. L. (2011). Ukrainskyi radiolohichnyi zhurnal, 2, 238–242.

Kyrychenko, S., Prishchepa, I., Lagoda, V., Velika, M., & Nedzvetsky, V. (2014). Neuroprotective effects of α-lipoic acid on the development of oxidative stress and astrogliosis in the brain of STZ-diabetic rats. Visnyk of Dnipropetrovsk University. Biology, Medicine, 5 (2), 143–147. https://doi.org/10.15421/021427

Chorna, V. I., Drozdov, A. L. (2006). Neirokhymyia, 1, 47–51.

Council Directive 2010/63/EU of 22 September 2010 on the protection of animals used for scientific purposes. (2010). Official Journal of the European

Communities. Available at: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF

Dobrelia, N. V., Strielkov, Ye. V., Bukhtiarova, T. A. (2014). Farmakolohiia ta likarska toksykolohiia, 2 (38), 88–91.

Berezhna, L. H., Kovalenko, V. M., Shaiakhmetova, H. M., Voronina, A. K., Voloshyna, O. S. (2005). Suchasni problemy toksykolohii, 3, 54–58.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72 (1-2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9 (7), 671–675. https://doi.org/10.1038/nmeth.2089

Nedzvetskyi, V. S. (2004). Fiziolohichnyi zhurnal, 50(1), 85–90.

Fomenko, O. Z., Ushakova H. O., Piierzhynovskyi S. H. (2011). Ukrainskyi biokhimichnyi zhurnal, 83 (1), 69–76.


GOST Style Citations


1. Protective effects of kaempferol on isoniazid- and rifampicin-induced hepatotoxicity / T. Y. Shih, T. H. Young, H. S. Lee et al. // AAPS J. – 2013. – Vol. 15, № 3. – P. 753–762. https://doi.org/10.1208/s12248-013-9490-6


2. Naringenin protects against isoniazid- and rifampicin-induced apoptosis in hepatic injury / C. Wang, R. Q. Fan, Y. X. Zhang et al. // World J. Gastroenterol. – 2016. – Vol. 22 (44). – P. 9775–9783. https://doi.org/10.3748/wjg.v22.i44.9775


3. Isoniazid metabolism and hepatotoxicity / P. Wang, K. Pradhan, X. B. Zhong, X. Ma // Acta Pharm. Sin. B. – 2016. – Vol. 6, № 5. – P. 384–392. https://doi.org/10.1016/j.apsb.2016.07.014


4. Potentiating effect of rifampicin on methimazole induced hepatotoxicity in mice / Z. Hakim, A. Waheed, S. Bakhtiar et al. // Pakistan J. of Pharmac. Sci. (PJPS). – 2018. – Vol. 31, № 6. – Р. 2373–2377.

 

5. Quality of life in patients with minimal hepatic encephalopathy / L. Ridola, S. Nardelli, S. Gioia, O. Riggio // World J. Gastroenterol. – 2018. – Vol. 24, № 48. – Р. 5446–5453. https://doi.org/10.3748/wjg.v24.i48.5446

 

6. Тюлькова, Т. Е. Влияние пиридоксина и препаратов гидрозида изоникотиновой кислоты на нервную систему при лечении туберкулеза / Т. Е. Тюлькова // Туберкулёз и болезни лёгких. – 2018. – Т. 96, № 11. – С. 69–73. https://doi.org/10.21292/2075-1230-2018-96-11-69-73


7. An Investigation Into Physical Frailty as a Link Between the Gut Microbiome and Cognitive Health / S. Verdi, M. A. Jackson, M. Beaumont et al. // Front. Aging Neurosci. – 2018. – Vol. 10. – P. 398. https://doi.org/10.3389/fnagi.2018.00398


8. Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy / N. Sivaranjani, M. Mamoudou, Y. Wuxing et al. // Microbiome. – 2017. – Vol. 71, № 5. https://doi.org/10.1186/s40168-017-0286-2


9. Antibiotic treatment for Tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed / M. F. Wipperman, D. W. Fitzgerald, M. A. J. Juste et al. // Sci. Rep. – 2017. – Vol. 7. – P. 10767. https://doi.org/10.1038/s41598-017-10346-6


10. Бєленічев, І. Ф. Порівняльне оцінювання ефективності дії сучасних нейропротекторів в умовах експериментальної хронічної ішемії мозку / І. Ф. Бєленічев // Запорожский мед. журн. – 2015. – № 2 (89). – С. 37–41.

 

11. Морфологическая характеристика гиппокампа при церебральном атеросклерозе / А. В. Смирнов, А. И. Краюшкин, Е. В. Горелик и др. // Современные проблемы науки и образования. – 2012. – № 1.


12. Assonov, D. O. Role of the hippocampus in memory functioning : modern view / D. O. Assonov, B. S. Bozhuk // Zaporozhye Medical J. – 2017. – № 6. – P.  833–838. https://doi.org/10.14739/2310-1210.2017.6.115318


13. Гомазков, О. А. Астроциты как посредники интеграционных процессов в мозге / О. А. Гомазков // Успехи современной биол. – 2018. – № 4. – С. 373–382. https://doi.org/10.7868/s004213241804004x


14. Гомазков, О. А. Астроциты как компоненты регуляции высших функций мозга / О. А. Гомазков // Нейрохимия. – 2019. – № 4. – С. 267–274. https://doi.org/10.1134/s1027813319030075


15. Ковальчук, Ю. П. Розподіл гліального фібрилярного кислого протеїну в різних відділах головного мозку піщанок під час розвитку, старіння та дії альфа-кетоглутарату / Ю. П. Ковальчук, Г. О. Ушакова // Медична та клінічна хімія. – 2016. – № 1. – С. 29–35. https://doi.org/10.11603/mcch.2410-681x.2016.v0.i1.6180


16. Чорна, В. І. Вплив малих доз іонізивного випромінення на маркер астрогліальної популяції клітин головного мозку (експерим. дослід.) / В. І. Чорна, О. Л. Лянна // Укр. радіол. журн. – 2011. – № 2. – С. 238–242.


17. Neuroprotective effects of α-lipoic acid on the development of oxidative stress and astrogliosis in the brain of STZ-diabetic rats / S. Kyrychenko, I. Prishchepa, V. Lagoda et al. // Visnyk of Dnipropetrovsk University. Biology, Medicine. – 2014. – Vol. 5 (2). – P. 143–147. https://doi.org/10.15421/021427


18. Дроздов, А. Л. Нейроспецифические белки ГФКБ и NCAM гиппокампа при формировании энграмм условно-рефлекторной памяти / А. Л. Дроздов, В. И. Черная // Нейрохимия. – 2006. – № 1. – С. 47–51.


19. Council Directive 2010/63/EU of 22 September 2010 on the protection of animals used for scientific purposes // Official J. of the European Communities. – 2010. [Електронний ресурс]. – Режим доступу : https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF


20. Добреля, Н. В. Розвиток європейського законодавства в сфері використання тварин у наукових експериментах / Н. В. Добреля, Є. В. Стрєлков, Т. А. Бухтіарова // Фармакол. та лікарська токсикол. – 2014. – № 2 (38). – C. 88–91.


21. Гепатопротекторний ефект експериментальної полівітамінної композиції  за умов індукції цитохрому Р-450 2Е1 ізоніазидом і рифампіцином / Л. Г. Бережна, В. М. Коваленко, Г. М. Шаяхметова та ін. // Сучасні проблеми токсикол. – 2005. – № 3. – С. 54–58.


22. Bradford, M. М. Rapid and sensitive methods for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding / M. M. Bradford // Anal. Biochem. – 1976. – Vol. 1-2. – P. 248–254. https://doi.org/10.1016/0003-2697(76)90527-3


23. Schneider, C. A. NIH Image to ImageJ : 25 years of image analysis / C. A. Schneider, W. S. Rasband, K. W. Eliceiri // Nature Methods. – 2012. – Vol. 7. – P. 671–675. https://doi.org/10.1038/nmeth.2089


24. Недзвецький, В. С. Стан гліальних проміжних філаментів і здатність до навчання у щурів при експериментальному діабеті / В. С. Недзвецький // Фізіол. журн. – 2004. – Т. 50, № 1. – С. 85–90.


25. Фоменко, О. З. Протеїни астроглії у мозку щурів за експериментального хронічного гепатиту та дії 2‑оксоглутарату / О. З. Фоменко, Г. О. Ушакова, С.  Г. Пієржиновський // Укр. біохім. журн. – 2011. –Т. 83, № 1. – С. 69–76.





Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abbreviated key title: Ukr. biopharm. j.

ISSN 2519-8750 (Online), ISSN 2311-715X (Print)